Reactor rate modulation oscillation analysis with two detectors in Double Chooz
Abstract A θ 13 oscillation analysis based on the observed antineutrino rates at the Double Chooz far and near detectors for different reactor power conditions is presented. This approach provides a so far unique simultaneous determination of θ 13 and the total background rates without relying on an...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-01-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | https://doi.org/10.1007/JHEP01(2021)190 |
id |
doaj-2596e084a0f14f61844a1cc0c28b9fd5 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
The Double Chooz collaboration T. Abrahão H. Almazan J. C. dos Anjos S. Appel J. C. Barriere I. Bekman T. J. C. Bezerra L. Bezrukov E. Blucher T. Brugière C. Buck J. Busenitz A. Cabrera M. Cerrada E. Chauveau P. Chimenti O. Corpace J. V. Dawson Z. Djurcic A. Etenko H. Furuta I. Gil-Botella A. Givaudan H. Gomez L. F. G. Gonzalez M. C. Goodman T. Hara J. Haser D. Hellwig A. Hourlier M. Ishitsuka J. Jochum C. Jollet K. Kale M. Kaneda M. Karakac T. Kawasaki E. Kemp H. de Kerret D. Kryn M. Kuze T. Lachenmaier C. E. Lane T. Lasserre C. Lastoria D. Lhuillier H. P. Lima M. Lindner J. M. López-Castaño J. M. LoSecco B. Lubsandorzhiev J. Maeda C. Mariani J. Maricic J. Martino T. Matsubara G. Mention A. Meregaglia T. Miletic R. Milincic A. Minotti D. Navas-Nicolás P. Novella L. Oberauer M. Obolensky A. Onillon A. Oralbaev C. Palomares I. M. Pepe G. Pronost J. Reichenbacher B. Reinhold S. Schönert S. Schoppmann L. Scola R. Sharankova V. Sibille V. Sinev M. Skorokhvatov P. Soldin A. Stahl I. Stancu L. F. F. Stokes F. Suekane S. Sukhotin T. Sumiyoshi Y. Sun C. Veyssiere B. Viaud M. Vivier S. Wagner C. Wiebusch G. Yang F. Yermia |
spellingShingle |
The Double Chooz collaboration T. Abrahão H. Almazan J. C. dos Anjos S. Appel J. C. Barriere I. Bekman T. J. C. Bezerra L. Bezrukov E. Blucher T. Brugière C. Buck J. Busenitz A. Cabrera M. Cerrada E. Chauveau P. Chimenti O. Corpace J. V. Dawson Z. Djurcic A. Etenko H. Furuta I. Gil-Botella A. Givaudan H. Gomez L. F. G. Gonzalez M. C. Goodman T. Hara J. Haser D. Hellwig A. Hourlier M. Ishitsuka J. Jochum C. Jollet K. Kale M. Kaneda M. Karakac T. Kawasaki E. Kemp H. de Kerret D. Kryn M. Kuze T. Lachenmaier C. E. Lane T. Lasserre C. Lastoria D. Lhuillier H. P. Lima M. Lindner J. M. López-Castaño J. M. LoSecco B. Lubsandorzhiev J. Maeda C. Mariani J. Maricic J. Martino T. Matsubara G. Mention A. Meregaglia T. Miletic R. Milincic A. Minotti D. Navas-Nicolás P. Novella L. Oberauer M. Obolensky A. Onillon A. Oralbaev C. Palomares I. M. Pepe G. Pronost J. Reichenbacher B. Reinhold S. Schönert S. Schoppmann L. Scola R. Sharankova V. Sibille V. Sinev M. Skorokhvatov P. Soldin A. Stahl I. Stancu L. F. F. Stokes F. Suekane S. Sukhotin T. Sumiyoshi Y. Sun C. Veyssiere B. Viaud M. Vivier S. Wagner C. Wiebusch G. Yang F. Yermia Reactor rate modulation oscillation analysis with two detectors in Double Chooz Journal of High Energy Physics Neutrino Detectors and Telescopes (experiments) Oscillation |
author_facet |
The Double Chooz collaboration T. Abrahão H. Almazan J. C. dos Anjos S. Appel J. C. Barriere I. Bekman T. J. C. Bezerra L. Bezrukov E. Blucher T. Brugière C. Buck J. Busenitz A. Cabrera M. Cerrada E. Chauveau P. Chimenti O. Corpace J. V. Dawson Z. Djurcic A. Etenko H. Furuta I. Gil-Botella A. Givaudan H. Gomez L. F. G. Gonzalez M. C. Goodman T. Hara J. Haser D. Hellwig A. Hourlier M. Ishitsuka J. Jochum C. Jollet K. Kale M. Kaneda M. Karakac T. Kawasaki E. Kemp H. de Kerret D. Kryn M. Kuze T. Lachenmaier C. E. Lane T. Lasserre C. Lastoria D. Lhuillier H. P. Lima M. Lindner J. M. López-Castaño J. M. LoSecco B. Lubsandorzhiev J. Maeda C. Mariani J. Maricic J. Martino T. Matsubara G. Mention A. Meregaglia T. Miletic R. Milincic A. Minotti D. Navas-Nicolás P. Novella L. Oberauer M. Obolensky A. Onillon A. Oralbaev C. Palomares I. M. Pepe G. Pronost J. Reichenbacher B. Reinhold S. Schönert S. Schoppmann L. Scola R. Sharankova V. Sibille V. Sinev M. Skorokhvatov P. Soldin A. Stahl I. Stancu L. F. F. Stokes F. Suekane S. Sukhotin T. Sumiyoshi Y. Sun C. Veyssiere B. Viaud M. Vivier S. Wagner C. Wiebusch G. Yang F. Yermia |
author_sort |
The Double Chooz collaboration |
title |
Reactor rate modulation oscillation analysis with two detectors in Double Chooz |
title_short |
Reactor rate modulation oscillation analysis with two detectors in Double Chooz |
title_full |
Reactor rate modulation oscillation analysis with two detectors in Double Chooz |
title_fullStr |
Reactor rate modulation oscillation analysis with two detectors in Double Chooz |
title_full_unstemmed |
Reactor rate modulation oscillation analysis with two detectors in Double Chooz |
title_sort |
reactor rate modulation oscillation analysis with two detectors in double chooz |
publisher |
SpringerOpen |
series |
Journal of High Energy Physics |
issn |
1029-8479 |
publishDate |
2021-01-01 |
description |
Abstract A θ 13 oscillation analysis based on the observed antineutrino rates at the Double Chooz far and near detectors for different reactor power conditions is presented. This approach provides a so far unique simultaneous determination of θ 13 and the total background rates without relying on any assumptions on the specific background contributions. The analysis comprises 865 days of data collected in both detectors with at least one reactor in operation. The oscillation results are enhanced by the use of 24.06 days (12.74 days) of reactor-off data in the far (near) detector. The analysis considers the ν ¯ e $$ {\overline{\nu}}_e $$ interactions up to a visible energy of 8.5 MeV, using the events at higher energies to build a cosmogenic background model considering fast-neutrons interactions and 9Li decays. The background-model-independent determination of the mixing angle yields sin2(2θ 13) = 0.094 ± 0.017, being the best-fit total background rates fully consistent with the cosmogenic background model. A second oscillation analysis is also performed constraining the total background rates to the cosmogenic background estimates. While the central value is not significantly modified due to the consistency between the reactor-off data and the background estimates, the addition of the background model reduces the uncertainty on θ 13 to 0.015. Along with the oscillation results, the normalization of the anti-neutrino rate is measured with a precision of 0.86%, reducing the 1.43% uncertainty associated to the expectation. |
topic |
Neutrino Detectors and Telescopes (experiments) Oscillation |
url |
https://doi.org/10.1007/JHEP01(2021)190 |
work_keys_str_mv |
AT thedoublechoozcollaboration reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT tabrahao reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT halmazan reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT jcdosanjos reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT sappel reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT jcbarriere reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT ibekman reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT tjcbezerra reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT lbezrukov reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT eblucher reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT tbrugiere reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT cbuck reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT jbusenitz reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT acabrera reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT mcerrada reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT echauveau reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT pchimenti reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT ocorpace reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT jvdawson reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT zdjurcic reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT aetenko reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT hfuruta reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT igilbotella reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT agivaudan reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT hgomez reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT lfggonzalez reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT mcgoodman reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT thara reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT jhaser reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT dhellwig reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT ahourlier reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT mishitsuka reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT jjochum reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT cjollet reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT kkale reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT mkaneda reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT mkarakac reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT tkawasaki reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT ekemp reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT hdekerret reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT dkryn reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT mkuze reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT tlachenmaier reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT celane reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT tlasserre reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT clastoria reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT dlhuillier reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT hplima reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT mlindner reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT jmlopezcastano reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT jmlosecco reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT blubsandorzhiev reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT jmaeda reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT cmariani reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT jmaricic reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT jmartino reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT tmatsubara reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT gmention reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT ameregaglia reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT tmiletic reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT rmilincic reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT aminotti reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT dnavasnicolas reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT pnovella reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT loberauer reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT mobolensky reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT aonillon reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT aoralbaev reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT cpalomares reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT impepe reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT gpronost reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT jreichenbacher reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT breinhold reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT sschonert reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT sschoppmann reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT lscola reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT rsharankova reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT vsibille reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT vsinev reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT mskorokhvatov reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT psoldin reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT astahl reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT istancu reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT lffstokes reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT fsuekane reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT ssukhotin reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT tsumiyoshi reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT ysun reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT cveyssiere reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT bviaud reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT mvivier reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT swagner reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT cwiebusch reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT gyang reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz AT fyermia reactorratemodulationoscillationanalysiswithtwodetectorsindoublechooz |
_version_ |
1724317367011377152 |
spelling |
doaj-2596e084a0f14f61844a1cc0c28b9fd52021-01-31T12:12:05ZengSpringerOpenJournal of High Energy Physics1029-84792021-01-012021111810.1007/JHEP01(2021)190Reactor rate modulation oscillation analysis with two detectors in Double ChoozThe Double Chooz collaborationT. Abrahão0H. Almazan1J. C. dos Anjos2S. Appel3J. C. Barriere4I. Bekman5T. J. C. Bezerra6L. Bezrukov7E. Blucher8T. Brugière9C. Buck10J. Busenitz11A. Cabrera12M. Cerrada13E. Chauveau14P. Chimenti15O. Corpace16J. V. Dawson17Z. Djurcic18A. Etenko19H. Furuta20I. Gil-Botella21A. Givaudan22H. Gomez23L. F. G. Gonzalez24M. C. Goodman25T. Hara26J. Haser27D. Hellwig28A. Hourlier29M. Ishitsuka30J. Jochum31C. Jollet32K. Kale33M. Kaneda34M. Karakac35T. Kawasaki36E. Kemp37H. de Kerret38D. Kryn39M. Kuze40T. Lachenmaier41C. E. Lane42T. Lasserre43C. Lastoria44D. Lhuillier45H. P. Lima46M. Lindner47J. M. López-Castaño48J. M. LoSecco49B. Lubsandorzhiev50J. Maeda51C. Mariani52J. Maricic53J. Martino54T. Matsubara55G. Mention56A. Meregaglia57T. Miletic58R. Milincic59A. Minotti60D. Navas-Nicolás61P. Novella62L. Oberauer63M. Obolensky64A. Onillon65A. Oralbaev66C. Palomares67I. M. Pepe68G. Pronost69J. Reichenbacher70B. Reinhold71S. Schönert72S. Schoppmann73L. Scola74R. Sharankova75V. Sibille76V. Sinev77M. Skorokhvatov78P. Soldin79A. Stahl80I. Stancu81L. F. F. Stokes82F. Suekane83S. Sukhotin84T. Sumiyoshi85Y. Sun86C. Veyssiere87B. Viaud88M. Vivier89S. Wagner90C. Wiebusch91G. Yang92F. Yermia93APC, Université de Paris, CNRS, Astroparticule et CosmologieMax-Planck-Institut für KernphysikCentro Brasileiro de Pesquisas FísicasPhysik Department, Technische Universität MünchenIRFU, CEA, Université Paris-SaclayIII. Physikalisches Institut, RWTH Aachen UniversityDepartment of Physics and Astronomy, University of SussexInstitute of Nuclear Research of the Russian Academy of SciencesThe Enrico Fermi Institute, The University of ChicagoIPHC, CNRS/IN2P3, Université de StrasbourgMax-Planck-Institut für KernphysikDepartment of Physics and Astronomy, University of AlabamaIJC Laboratory, CNRS/IN2P3, Université Paris-SaclayCentro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMATUniversité de Bordeaux, CNRS/IN2P3, CENBGUniversidade Estadual de LondrinaIRFU, CEA, Université Paris-SaclayAPC, Université de Paris, CNRS, Astroparticule et CosmologieArgonne National LaboratoryNRC Kurchatov InstituteResearch Center for Neutrino Science, Tohoku UniversityCentro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMATAPC, Université de Paris, CNRS, Astroparticule et CosmologieAPC, Université de Paris, CNRS, Astroparticule et CosmologieUniversidade Estadual de Campinas-UNICAMPArgonne National LaboratoryDepartment of Physics, Kobe UniversityMax-Planck-Institut für KernphysikIII. Physikalisches Institut, RWTH Aachen UniversityMassachusetts Institute of TechnologyTokyo University of ScienceKepler Center for Astro and Particle Physics, Universität TübingenUniversité de Bordeaux, CNRS/IN2P3, CENBGUniversité de Bordeaux, CNRS/IN2P3, CENBGDepartment of Physics, Tokyo Institute of TechnologyAPC, Université de Paris, CNRS, Astroparticule et CosmologieDepartment of Physics, Kitasato UniversityUniversidade Estadual de Campinas-UNICAMPAPC, Université de Paris, CNRS, Astroparticule et CosmologieAPC, Université de Paris, CNRS, Astroparticule et CosmologieDepartment of Physics, Tokyo Institute of TechnologyKepler Center for Astro and Particle Physics, Universität TübingenDepartment of Physics, Drexel UniversityAPC, Université de Paris, CNRS, Astroparticule et CosmologieCentro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMATIRFU, CEA, Université Paris-SaclayCentro Brasileiro de Pesquisas FísicasMax-Planck-Institut für KernphysikSouth Dakota School of Mines & TechnologyUniversity of Notre DameInstitute of Nuclear Research of the Russian Academy of SciencesDepartment of Physics, Kobe UniversityCenter for Neutrino Physics, Virginia TechPhysics & Astronomy Department, University of Hawaii at ManoaSUBATECH, CNRS/IN2P3, Université de Nantes, IMT-AtlantiqueHigh Energy Accelerator Research Organization (KEK)IRFU, CEA, Université Paris-SaclayUniversité de Bordeaux, CNRS/IN2P3, CENBGPhysics Department, Arcadia UniversityPhysics & Astronomy Department, University of Hawaii at ManoaLAPP, CNRS/IN2P3IJC Laboratory, CNRS/IN2P3, Université Paris-SaclayInstituto de Física Corpuscular, IFIC (CSIC/UV)Physik Department, Technische Universität MünchenAPC, Université de Paris, CNRS, Astroparticule et CosmologieIRFU, CEA, Université Paris-SaclayNRC Kurchatov InstituteCentro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMATCentro Brasileiro de Pesquisas FísicasKamioka Observatory, ICRR, University of TokyoSouth Dakota School of Mines & TechnologyPhysics & Astronomy Department, University of Hawaii at ManoaPhysik Department, Technische Universität MünchenMax-Planck-Institut für KernphysikIRFU, CEA, Université Paris-SaclayDepartment of Physics, Tokyo Institute of TechnologyMassachusetts Institute of TechnologyInstitute of Nuclear Research of the Russian Academy of SciencesNRC Kurchatov InstituteIII. Physikalisches Institut, RWTH Aachen UniversityIII. Physikalisches Institut, RWTH Aachen UniversityDepartment of Physics and Astronomy, University of AlabamaKepler Center for Astro and Particle Physics, Universität TübingenAPC, Université de Paris, CNRS, Astroparticule et CosmologieNRC Kurchatov InstituteDepartment of Physics, Tokyo Metropolitan UniversityPhysics & Astronomy Department, University of Hawaii at ManoaIRFU, CEA, Université Paris-SaclaySUBATECH, CNRS/IN2P3, Université de Nantes, IMT-AtlantiqueIRFU, CEA, Université Paris-SaclayAPC, Université de Paris, CNRS, Astroparticule et CosmologieIII. Physikalisches Institut, RWTH Aachen UniversityState University of New York at Stony BrookSUBATECH, CNRS/IN2P3, Université de Nantes, IMT-AtlantiqueAbstract A θ 13 oscillation analysis based on the observed antineutrino rates at the Double Chooz far and near detectors for different reactor power conditions is presented. This approach provides a so far unique simultaneous determination of θ 13 and the total background rates without relying on any assumptions on the specific background contributions. The analysis comprises 865 days of data collected in both detectors with at least one reactor in operation. The oscillation results are enhanced by the use of 24.06 days (12.74 days) of reactor-off data in the far (near) detector. The analysis considers the ν ¯ e $$ {\overline{\nu}}_e $$ interactions up to a visible energy of 8.5 MeV, using the events at higher energies to build a cosmogenic background model considering fast-neutrons interactions and 9Li decays. The background-model-independent determination of the mixing angle yields sin2(2θ 13) = 0.094 ± 0.017, being the best-fit total background rates fully consistent with the cosmogenic background model. A second oscillation analysis is also performed constraining the total background rates to the cosmogenic background estimates. While the central value is not significantly modified due to the consistency between the reactor-off data and the background estimates, the addition of the background model reduces the uncertainty on θ 13 to 0.015. Along with the oscillation results, the normalization of the anti-neutrino rate is measured with a precision of 0.86%, reducing the 1.43% uncertainty associated to the expectation.https://doi.org/10.1007/JHEP01(2021)190Neutrino Detectors and Telescopes (experiments)Oscillation |