Synthesis of Palladium and Copper Nanoparticles Supported on TiO<sub>2</sub> for Oxidation Solvent-Free Aerobic Oxidation of Benzyl Alcohol

The use of metal oxides as supports for palladium and copper (Pd–Cu) nanoalloys constitutes a new horizon for improving new active catalysts in very important reactions. From the literatures, Pd-based bimetallic nanostructures have great properties and active catalytic performance. In this work, nan...

Full description

Bibliographic Details
Main Author: Hamed M. Alshammari
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Processes
Subjects:
Online Access:https://www.mdpi.com/2227-9717/9/9/1590
Description
Summary:The use of metal oxides as supports for palladium and copper (Pd–Cu) nanoalloys constitutes a new horizon for improving new active catalysts in very important reactions. From the literatures, Pd-based bimetallic nanostructures have great properties and active catalytic performance. In this work, nanostructures of titanium dioxide (TiO<sub>2</sub>) were used as supports for Pd–Cu nanoparticles catalysts. Palladium and copper were deposited on these supports using the sol-immobilisation method. The composite nanoalloys were characterized using transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The catalyst was evaluated for the oxidation of benzyl alcohol. The effect of the Cu–Pd ratio using sol-immobilization methods supported on TiO<sub>2</sub> was investigated. The results show that monometallic Cu/TiO<sub>2</sub> was observed to have a low activity. However, as soon as the catalyst contained any palladium, the activity increased with a significant increase in the selectivity towards isomerization products. The influence of support and temperature were investigated. Furthermore, the catalyst reusability was also tested for oxidation of benzyl alcohol reactions, by repeatedly performing the same reaction using the recovered catalyst. The Pd–Cu/TiO<sub>2</sub> catalyst displayed better reusability even after several reactions
ISSN:2227-9717