High Nanodiamond Content-PCL Composite for Tissue Engineering Scaffolds

Multifunctional scaffolds are becoming increasingly important in the field of tissue engineering. In this research, a composite material is developed using polycaprolactone (PCL) and detonation nanodiamond (ND) to take advantage of the unique properties of ND and the biodegradability of PCL polymer....

Full description

Bibliographic Details
Main Authors: Kate Fox, Rahul Ratwatte, Marsilea A. Booth, Hoai My Tran, Phong A. Tran
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/10/5/948
Description
Summary:Multifunctional scaffolds are becoming increasingly important in the field of tissue engineering. In this research, a composite material is developed using polycaprolactone (PCL) and detonation nanodiamond (ND) to take advantage of the unique properties of ND and the biodegradability of PCL polymer. Different ND loading concentrations are investigated, and the physicochemical properties of the composites are characterized. ND-PCL composite films show a higher surface roughness and hydrophilicity than PCL alone, with a slight decrease in tensile strength and a significant increase in degradation. Higher loading of ND also shows a higher osteoblast adhesion than the PCL alone sample. Finally, we show that the ND-PCL composites are successfully extruded to create a 3D scaffold demonstrating their potential as a composite material for tissue regeneration.
ISSN:2079-4991