Summary: | The energy system is changing due to a steady increase in electric vehicles on the demand side and local production (mostly through solar panels) on the production side. Both developments can put the energy grid under stress during certain timeframes, while there might be enough capacity on the grid most of the day. Smart charging of electric vehicles might be a solution to time dependent congestion. In this study, a smart charging strategy was developed and tested in large scale with 1000 public chargers, operated in the real word. We developed and tested protocols to temporarily limit the charger capacity based on the transformer data and the number of running sessions. Over 150,000 sessions were handled, of which almost half were influenced by the smart charging strategy applied. We found that we were able to keep within the grid limits by using these controls, without hindering the driver experience. Further improvements to the smart charging strategy can be made as soon as car manufacturers share information about the car battery such as the state of charge.
|