Summary: | This article presents a design, output voltage and inductor current regulations of the negative output elementary boost converter (NOEBC) operated in continuous conduction mode (CCM) using sliding mode controller (SMC) plus proportional double integral controller (PDIC). The NOEBC is a dc–dc converter that can provide high voltage transfer gain, high efficiency, and reduced output voltage and inductor current ripples in comparison with the conventional boost converter. Owing to the time varying switched mode operation, the dynamic characteristics of the NOEBC is non-linear and the designed SMC plus PDIC aims at enhancing the dynamic characteristics along with the inductor current and the output voltage regulations of the NOEBC. The proposed SMC is more appropriate to the essentially variable-structured NOEBC when represented in the state-space average based model. Here, the PDIC suppresses the steady state error and excellent initial start-up response of NOEBC in spite of input supply voltage and load resistance variations. The performance of the SMC plus PDIC is verified for its robustness to perform over a broad range of working conditions in MATLAB/Simulink models as well as in the experimental with the comparative study of a SMC plus proportional-integral-controller (PIC). Simulation and experimental results are presented.
|