Influence of the Location of Electron-Donating 3,4-Ethylenedioxythiophene (EDOT) Moiety in the A–π–D–π–A Type Conjugated Molecules on the Optoelectronic Properties and Photovoltaic Performances

Abstract A–π–D–π–A type conjugated small molecules play an indispensable role in organic photovoltaics. Understanding the relationship between the molecular structure and performance is a fundamental question for the further rational design of high-performance organic materials. To red-shift the abs...

Full description

Bibliographic Details
Main Authors: Lilei Wang, Ying Zhang, Xiang Guan, Wei Gao, Yi Lin, Qun Luo, Hongwei Tan, Hai-Bo Yang, Chang-Qi Ma
Format: Article
Language:English
Published: Georg Thieme Verlag 2021-04-01
Series:Organic Materials
Subjects:
Online Access:http://www.thieme-connect.de/DOI/DOI?10.1055/a-1472-7109
Description
Summary:Abstract A–π–D–π–A type conjugated small molecules play an indispensable role in organic photovoltaics. Understanding the relationship between the molecular structure and performance is a fundamental question for the further rational design of high-performance organic materials. To red-shift the absorption spectrum of benzo[1,2-b:4,5-b']dithiophene (BDT) based A–π–D–π–A type compounds, an electron-donating 3,4-ethylenedioxythiophene (EDOT) moiety was introduced into the π-conjugation bridge unit. Two new compounds with EDOT next to the central BDT core (COOP-2HT-EDOT-BDT) or next to the terminal electron acceptor unit (COOP-EDOT-2HT-BDT) were synthesized and characterized. The compound COOP-2HT-EDOT-BDT showed higher molar extinction coefficient (εabs max = 1.06 × 105 L mol−1 cm−1), lower optical band gap (E g = 1.56 eV) and high HOMO energy level (E HOMO = −5.08 eV) than COOP-EDOT-2HT-BDT (εabs max = 0.96 × 105 L mol−1 cm−1, E g = 1.71 eV, E HOMO = −5.26 eV), which is attributed to the intensive interaction between the EDOT unit and the HOMO orbital, as confirmed by the theoretical calculation results. However, the higher power conversion efficiency of 3.58% was achieved for the COOP-EDOT-2HT-BDT:PC61BM-based solar cells, demonstrating that the electron-donating EDOT unit adjacent to the electron-withdrawing end-capped group (COOP) is a better way to achieve high-performance photovoltaic materials.
ISSN:2625-1825