3D-QSAR and Molecular Docking Studies on Derivatives of MK-0457, GSK1070916 and SNS-314 as Inhibitors against Aurora B Kinase
Development of anticancer drugs targeting Aurora B, an important member of the serine/threonine kinases family, has been extensively focused on in recent years. In this work, by applying an integrated computational method, including comparative molecular field analysis (CoMFA), comparative molecular...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2010-11-01
|
Series: | International Journal of Molecular Sciences |
Subjects: | |
Online Access: | http://www.mdpi.com/1422-0067/11/11/4326/ |
id |
doaj-253b6fc6b47e452ab9860382c17b588f |
---|---|
record_format |
Article |
spelling |
doaj-253b6fc6b47e452ab9860382c17b588f2020-11-24T23:16:15ZengMDPI AGInternational Journal of Molecular Sciences1422-00672010-11-0111114326434710.3390/ijms111143263D-QSAR and Molecular Docking Studies on Derivatives of MK-0457, GSK1070916 and SNS-314 as Inhibitors against Aurora B KinaseChunzhi AiHuixiao ZhangBaidong ZhangYan LiDevelopment of anticancer drugs targeting Aurora B, an important member of the serine/threonine kinases family, has been extensively focused on in recent years. In this work, by applying an integrated computational method, including comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), homology modeling and molecular docking, we investigated the structural determinants of Aurora B inhibitors based on three different series of derivatives of 108 molecules. The resultant optimum 3D-QSAR models exhibited (q2 = 0.605, r2pred = 0.826), (q2 = 0.52, r2pred = 0.798) and (q2 = 0.582, r2pred = 0.971) for MK-0457, GSK1070916 and SNS-314 classes, respectively, and the 3D contour maps generated from these models were analyzed individually. The contour map analysis for the MK-0457 model revealed the relative importance of steric and electrostatic effects for Aurora B inhibition, whereas, the electronegative groups with hydrogen bond donating capacity showed a great impact on the inhibitory activity for the derivatives of GSK1070916. Additionally, the predictive model of the SNS-314 class revealed the great importance of hydrophobic favorable contour, since hydrophobic favorable substituents added to this region bind to a deep and narrow hydrophobic pocket composed of residues that are hydrophobic in nature and thus enhanced the inhibitory activity. Moreover, based on the docking study, a further comparison of the binding modes was accomplished to identify a set of critical residues that play a key role in stabilizing the drug-target interactions. Overall, the high level of consistency between the 3D contour maps and the topographical features of binding sites led to our identification of several key structural requirements for more potency inhibitors. Taken together, the results will serve as a basis for future drug development of inhibitors against Aurora B kinase for various tumors. http://www.mdpi.com/1422-0067/11/11/4326/Aurora Bdrug design3D-QSARCoMFACoMSIAmolecular dockinghomology modeling |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Chunzhi Ai Huixiao Zhang Baidong Zhang Yan Li |
spellingShingle |
Chunzhi Ai Huixiao Zhang Baidong Zhang Yan Li 3D-QSAR and Molecular Docking Studies on Derivatives of MK-0457, GSK1070916 and SNS-314 as Inhibitors against Aurora B Kinase International Journal of Molecular Sciences Aurora B drug design 3D-QSAR CoMFA CoMSIA molecular docking homology modeling |
author_facet |
Chunzhi Ai Huixiao Zhang Baidong Zhang Yan Li |
author_sort |
Chunzhi Ai |
title |
3D-QSAR and Molecular Docking Studies on Derivatives of MK-0457, GSK1070916 and SNS-314 as Inhibitors against Aurora B Kinase |
title_short |
3D-QSAR and Molecular Docking Studies on Derivatives of MK-0457, GSK1070916 and SNS-314 as Inhibitors against Aurora B Kinase |
title_full |
3D-QSAR and Molecular Docking Studies on Derivatives of MK-0457, GSK1070916 and SNS-314 as Inhibitors against Aurora B Kinase |
title_fullStr |
3D-QSAR and Molecular Docking Studies on Derivatives of MK-0457, GSK1070916 and SNS-314 as Inhibitors against Aurora B Kinase |
title_full_unstemmed |
3D-QSAR and Molecular Docking Studies on Derivatives of MK-0457, GSK1070916 and SNS-314 as Inhibitors against Aurora B Kinase |
title_sort |
3d-qsar and molecular docking studies on derivatives of mk-0457, gsk1070916 and sns-314 as inhibitors against aurora b kinase |
publisher |
MDPI AG |
series |
International Journal of Molecular Sciences |
issn |
1422-0067 |
publishDate |
2010-11-01 |
description |
Development of anticancer drugs targeting Aurora B, an important member of the serine/threonine kinases family, has been extensively focused on in recent years. In this work, by applying an integrated computational method, including comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), homology modeling and molecular docking, we investigated the structural determinants of Aurora B inhibitors based on three different series of derivatives of 108 molecules. The resultant optimum 3D-QSAR models exhibited (q2 = 0.605, r2pred = 0.826), (q2 = 0.52, r2pred = 0.798) and (q2 = 0.582, r2pred = 0.971) for MK-0457, GSK1070916 and SNS-314 classes, respectively, and the 3D contour maps generated from these models were analyzed individually. The contour map analysis for the MK-0457 model revealed the relative importance of steric and electrostatic effects for Aurora B inhibition, whereas, the electronegative groups with hydrogen bond donating capacity showed a great impact on the inhibitory activity for the derivatives of GSK1070916. Additionally, the predictive model of the SNS-314 class revealed the great importance of hydrophobic favorable contour, since hydrophobic favorable substituents added to this region bind to a deep and narrow hydrophobic pocket composed of residues that are hydrophobic in nature and thus enhanced the inhibitory activity. Moreover, based on the docking study, a further comparison of the binding modes was accomplished to identify a set of critical residues that play a key role in stabilizing the drug-target interactions. Overall, the high level of consistency between the 3D contour maps and the topographical features of binding sites led to our identification of several key structural requirements for more potency inhibitors. Taken together, the results will serve as a basis for future drug development of inhibitors against Aurora B kinase for various tumors. |
topic |
Aurora B drug design 3D-QSAR CoMFA CoMSIA molecular docking homology modeling |
url |
http://www.mdpi.com/1422-0067/11/11/4326/ |
work_keys_str_mv |
AT chunzhiai 3dqsarandmoleculardockingstudiesonderivativesofmk0457gsk1070916andsns314asinhibitorsagainstaurorabkinase AT huixiaozhang 3dqsarandmoleculardockingstudiesonderivativesofmk0457gsk1070916andsns314asinhibitorsagainstaurorabkinase AT baidongzhang 3dqsarandmoleculardockingstudiesonderivativesofmk0457gsk1070916andsns314asinhibitorsagainstaurorabkinase AT yanli 3dqsarandmoleculardockingstudiesonderivativesofmk0457gsk1070916andsns314asinhibitorsagainstaurorabkinase |
_version_ |
1725588054198976512 |