Prediction of the stress-strain state of circular workings in a layered massif by scaling

The scientific and technical task for determining the stress-strain state of mine workings is complicated by the presence of a layered massif. This task assumes particular importance in the case of circular tunneling. During its operation, it is important to predict the change of the stressstrain st...

Full description

Bibliographic Details
Main Authors: Alkhdour Ahmad, Radkevych Anatolii, Tiutkin Oleksii, Bondarenko Nataliia
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/28/e3sconf_rmget2020_00020.pdf
Description
Summary:The scientific and technical task for determining the stress-strain state of mine workings is complicated by the presence of a layered massif. This task assumes particular importance in the case of circular tunneling. During its operation, it is important to predict the change of the stressstrain state for the massif or to carry out the prompt determination in the change of stresses and displacements for the unsupported working. The solution of this geomechanical task allows performing geometrical matching of the working, ensuring its strength and stability in the layered massif. A numerical finite element method based on StructureCAD (SCAD) software package was used to solve it. Four geomechanical systems were calculated: “unsupported working – layered massif”. Owing to the obtained results, graphs of stresses and displacements were constructed, which allow to determine these parameters for workings with different geometric parameters and X-parameter characterizing the ratio of the elasticity modulus of the matrix and the layer. Obtained regularities of change of stresses and displacements for the unsupported working when zooming made it possible to introduce scaling-parameters, which are a dimensionless ratio of the radii for a real system and a system with a unit diameter.
ISSN:2267-1242