A simple flexible cryptosystem for meshed 3D objects and images
In cryptography, the previous research generally appears ambiguous and complex to the novice researcher due to the use of complex mathematical equations and rules of cryptography. Moreover, many research approaches lack flexibility in their key length or in their level of encryption. Consequently, c...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2021-07-01
|
Series: | Journal of King Saud University: Computer and Information Sciences |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S1319157818312631 |
id |
doaj-2527dd8628d440e196e19bde205d36e2 |
---|---|
record_format |
Article |
spelling |
doaj-2527dd8628d440e196e19bde205d36e22021-07-03T04:44:41ZengElsevierJournal of King Saud University: Computer and Information Sciences1319-15782021-07-01336629646A simple flexible cryptosystem for meshed 3D objects and imagesManal Abd Al-Jabbar Ahmad Mizher0Riza Sulaiman1Ayman Mahmoud Aref Abdalla2Manar Abduljabbar Ahmad Mizher3Institute of Visual Informatics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Corresponding author.Institute of Visual Informatics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, MalaysiaFaculty of Science & I.T, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, JordanInstitute of Visual Informatics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, MalaysiaIn cryptography, the previous research generally appears ambiguous and complex to the novice researcher due to the use of complex mathematical equations and rules of cryptography. Moreover, many research approaches lack flexibility in their key length or in their level of encryption. Consequently, combining simplicity, flexibility, and reliability is not easily obtainable in a cryptosystem, especially for larger and more complex data items. Therefore, a new system, called Flexible cryptosystem based on Cellular Automata (FcCA), is proposed here as a novel simplified flexible cryptosystem based on cellular automata (CA). FcCA presents simplified techniques for making CA reversible while creating a robust flexible cryptosystem that performs lossless encryption of three-dimensional (3D) objects and images of different types. It uses pure random CA as a diffusion technique, and it employs a modified existing confusion technique by substituting the static start point with proposed multi-dynamic intersected start points. In addition, FcCA novelty includes using a combination of aspects: random configuration with open boundary conditions, g-th order memory independent-cell technique, and classification of two parts of the encryption key into subkeys. The length and complexity of FcCA subkeys can be controlled easily because the subkeys depend on flexible parameters. Testing and validation of FcCA scrambling level were performed with several criteria including correlation, entropy, peak signal to noise ratio, and value difference degree. Experimental results showed that FcCA has high flexibility, a high level of scrambling, and higher robustness of keys compared to other methods of encryption. In addition, sensitivity analysis showed FcCA to be highly sensitive to changes in the encryption key and encrypted images and objects. Overall, the properties of FcCA demonstrated its effectiveness as a cryptosystem for images and 3D objects.http://www.sciencedirect.com/science/article/pii/S1319157818312631Cellular automataGrayscaleRGBMeshed 3D object |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Manal Abd Al-Jabbar Ahmad Mizher Riza Sulaiman Ayman Mahmoud Aref Abdalla Manar Abduljabbar Ahmad Mizher |
spellingShingle |
Manal Abd Al-Jabbar Ahmad Mizher Riza Sulaiman Ayman Mahmoud Aref Abdalla Manar Abduljabbar Ahmad Mizher A simple flexible cryptosystem for meshed 3D objects and images Journal of King Saud University: Computer and Information Sciences Cellular automata Grayscale RGB Meshed 3D object |
author_facet |
Manal Abd Al-Jabbar Ahmad Mizher Riza Sulaiman Ayman Mahmoud Aref Abdalla Manar Abduljabbar Ahmad Mizher |
author_sort |
Manal Abd Al-Jabbar Ahmad Mizher |
title |
A simple flexible cryptosystem for meshed 3D objects and images |
title_short |
A simple flexible cryptosystem for meshed 3D objects and images |
title_full |
A simple flexible cryptosystem for meshed 3D objects and images |
title_fullStr |
A simple flexible cryptosystem for meshed 3D objects and images |
title_full_unstemmed |
A simple flexible cryptosystem for meshed 3D objects and images |
title_sort |
simple flexible cryptosystem for meshed 3d objects and images |
publisher |
Elsevier |
series |
Journal of King Saud University: Computer and Information Sciences |
issn |
1319-1578 |
publishDate |
2021-07-01 |
description |
In cryptography, the previous research generally appears ambiguous and complex to the novice researcher due to the use of complex mathematical equations and rules of cryptography. Moreover, many research approaches lack flexibility in their key length or in their level of encryption. Consequently, combining simplicity, flexibility, and reliability is not easily obtainable in a cryptosystem, especially for larger and more complex data items. Therefore, a new system, called Flexible cryptosystem based on Cellular Automata (FcCA), is proposed here as a novel simplified flexible cryptosystem based on cellular automata (CA). FcCA presents simplified techniques for making CA reversible while creating a robust flexible cryptosystem that performs lossless encryption of three-dimensional (3D) objects and images of different types. It uses pure random CA as a diffusion technique, and it employs a modified existing confusion technique by substituting the static start point with proposed multi-dynamic intersected start points. In addition, FcCA novelty includes using a combination of aspects: random configuration with open boundary conditions, g-th order memory independent-cell technique, and classification of two parts of the encryption key into subkeys. The length and complexity of FcCA subkeys can be controlled easily because the subkeys depend on flexible parameters. Testing and validation of FcCA scrambling level were performed with several criteria including correlation, entropy, peak signal to noise ratio, and value difference degree. Experimental results showed that FcCA has high flexibility, a high level of scrambling, and higher robustness of keys compared to other methods of encryption. In addition, sensitivity analysis showed FcCA to be highly sensitive to changes in the encryption key and encrypted images and objects. Overall, the properties of FcCA demonstrated its effectiveness as a cryptosystem for images and 3D objects. |
topic |
Cellular automata Grayscale RGB Meshed 3D object |
url |
http://www.sciencedirect.com/science/article/pii/S1319157818312631 |
work_keys_str_mv |
AT manalabdaljabbarahmadmizher asimpleflexiblecryptosystemformeshed3dobjectsandimages AT rizasulaiman asimpleflexiblecryptosystemformeshed3dobjectsandimages AT aymanmahmoudarefabdalla asimpleflexiblecryptosystemformeshed3dobjectsandimages AT manarabduljabbarahmadmizher asimpleflexiblecryptosystemformeshed3dobjectsandimages AT manalabdaljabbarahmadmizher simpleflexiblecryptosystemformeshed3dobjectsandimages AT rizasulaiman simpleflexiblecryptosystemformeshed3dobjectsandimages AT aymanmahmoudarefabdalla simpleflexiblecryptosystemformeshed3dobjectsandimages AT manarabduljabbarahmadmizher simpleflexiblecryptosystemformeshed3dobjectsandimages |
_version_ |
1721321256458911744 |