Cysteine Proteinase-1 and Cut Protein Isoform Control Dendritic Innervation of Two Distinct Sensory Fields by a Single Neuron

Dendrites often exhibit structural changes in response to local inputs. Although mechanisms that pattern and maintain dendritic arbors are becoming clearer, processes regulating regrowth, during context-dependent plasticity or after injury, remain poorly understood. We found that a class of Drosophi...

Full description

Bibliographic Details
Main Authors: Gray R. Lyons, Ryan O. Andersen, Khadar Abdi, Won-Seok Song, Chay T. Kuo
Format: Article
Language:English
Published: Elsevier 2014-03-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124714000825
Description
Summary:Dendrites often exhibit structural changes in response to local inputs. Although mechanisms that pattern and maintain dendritic arbors are becoming clearer, processes regulating regrowth, during context-dependent plasticity or after injury, remain poorly understood. We found that a class of Drosophila sensory neurons, through complete pruning and regeneration, can elaborate two distinct dendritic trees, innervating independent sensory fields. An expression screen identified Cysteine proteinase-1 (Cp1) as a critical regulator of this process. Unlike known ecdysone effectors, Cp1-mutant ddaC neurons pruned larval dendrites normally but failed to regrow adult dendrites. Cp1 expression was upregulated/concentrated in the nucleus during metamorphosis, controlling production of a truncated Cut homeodomain transcription factor. This truncated Cut, but not the full-length protein, allowed Cp1-mutant ddaC neurons to regenerate higher-order adult dendrites. These results identify a molecular pathway needed for dendrite regrowth after pruning, which allows the same neuron to innervate distinct sensory fields.
ISSN:2211-1247