Global Stability of a HIV-1 Model with General Nonlinear Incidence and Delays

A HIV-1 model with two distributed intracellular delays and general incidence function is studied. Conditions are given under which the system exhibits the threshold behavior: the disease-free equilibrium E0 is globally asymptotically stable if R0≤1; if R0>1, then the unique endemic equilibrium E...

Full description

Bibliographic Details
Main Authors: Yaping Wang, Fuqin Sun
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2013/324546
id doaj-24ee4efc6c5b494aab3078fef74c6a4a
record_format Article
spelling doaj-24ee4efc6c5b494aab3078fef74c6a4a2020-11-24T22:08:57ZengHindawi LimitedJournal of Applied Mathematics1110-757X1687-00422013-01-01201310.1155/2013/324546324546Global Stability of a HIV-1 Model with General Nonlinear Incidence and DelaysYaping Wang0Fuqin Sun1School of Science, Tianjin University of Technology and Education, Tianjin 300222, ChinaSchool of Science, Tianjin University of Technology and Education, Tianjin 300222, ChinaA HIV-1 model with two distributed intracellular delays and general incidence function is studied. Conditions are given under which the system exhibits the threshold behavior: the disease-free equilibrium E0 is globally asymptotically stable if R0≤1; if R0>1, then the unique endemic equilibrium E1 is globally asymptotically stable. Finally, it is shown that the given conditions are satisfied by several common forms of the incidence functions.http://dx.doi.org/10.1155/2013/324546
collection DOAJ
language English
format Article
sources DOAJ
author Yaping Wang
Fuqin Sun
spellingShingle Yaping Wang
Fuqin Sun
Global Stability of a HIV-1 Model with General Nonlinear Incidence and Delays
Journal of Applied Mathematics
author_facet Yaping Wang
Fuqin Sun
author_sort Yaping Wang
title Global Stability of a HIV-1 Model with General Nonlinear Incidence and Delays
title_short Global Stability of a HIV-1 Model with General Nonlinear Incidence and Delays
title_full Global Stability of a HIV-1 Model with General Nonlinear Incidence and Delays
title_fullStr Global Stability of a HIV-1 Model with General Nonlinear Incidence and Delays
title_full_unstemmed Global Stability of a HIV-1 Model with General Nonlinear Incidence and Delays
title_sort global stability of a hiv-1 model with general nonlinear incidence and delays
publisher Hindawi Limited
series Journal of Applied Mathematics
issn 1110-757X
1687-0042
publishDate 2013-01-01
description A HIV-1 model with two distributed intracellular delays and general incidence function is studied. Conditions are given under which the system exhibits the threshold behavior: the disease-free equilibrium E0 is globally asymptotically stable if R0≤1; if R0>1, then the unique endemic equilibrium E1 is globally asymptotically stable. Finally, it is shown that the given conditions are satisfied by several common forms of the incidence functions.
url http://dx.doi.org/10.1155/2013/324546
work_keys_str_mv AT yapingwang globalstabilityofahiv1modelwithgeneralnonlinearincidenceanddelays
AT fuqinsun globalstabilityofahiv1modelwithgeneralnonlinearincidenceanddelays
_version_ 1725813669684576256