Summary: | Concerns about the efficiency of Heating, Ventilating, and Air Conditioning systems, including Air Handling Units (AHUs), started in the last century due to the energy crisis. Thenceforth, important improvements on the AHUs performance have emerged. Among the various improvements, the control of the AHUs and the redesign of the fans are the most important ones. Although, with increasingly demanding energy efficiency requirements, other constructive solutions must be investigated. Therefore, the objective of this work is to investigate, using a computational fluid dynamics (CFD) tool, the fluid flow inside an AHU and to analyze different constructive solutions in order to improve the AHU performance. The numerical model provided a reasonable agreement with the experimental results in terms of air flow rate, despite the assumed simplifications. Regarding the constructive solution concept, the CFD results for the two different flow control units (FCUs) showed improvements in terms of fan static pressure rise. Under real conditions, improvements of 15.1% when compared with the case without the FCU were obtained. Nevertheless, it was concluded that the axial component of the air velocity, at the fan exit, can have a determinant impact on the FCU viability. Finally, an improved FCU geometry, with a new body shape, which resulted in an additional improvement of 6.1% in the fan static pressure rise.
|