The Hopf algebra structure of the R∗-operation

Abstract We give a Hopf-algebraic formulation of the R ∗ -operation, which is a canonical way to render UV and IR divergent Euclidean Feynman diagrams finite. Our analysis uncovers a close connection to Brown’s Hopf algebra of motic graphs. Using this connection we are able to provide a verbose proo...

Full description

Bibliographic Details
Main Authors: Robert Beekveldt, Michael Borinsky, Franz Herzog
Format: Article
Language:English
Published: SpringerOpen 2020-07-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP07(2020)061
Description
Summary:Abstract We give a Hopf-algebraic formulation of the R ∗ -operation, which is a canonical way to render UV and IR divergent Euclidean Feynman diagrams finite. Our analysis uncovers a close connection to Brown’s Hopf algebra of motic graphs. Using this connection we are able to provide a verbose proof of the long observed ‘commutativity’ of UV and IR subtractions. We also give a new duality between UV and IR counterterms, which, entirely algebraic in nature, is formulated as an inverse relation on the group of characters of the Hopf algebra of log-divergent scaleless Feynman graphs. Many explicit examples of calculations with applications to infrared rearrangement are given.
ISSN:1029-8479