Spectral Discrimination of Archaeological Sites Previously Occupied by Farming Communities Using In Situ Hyperspectral Data

This study investigates the ability of field spectra measurements to discriminate between soils from non-sites (natural soils) and from archaeological sites, such as middens (rubbish-dumping areas) and animal byres. First, we tested whether there is a difference in the concentration of elements betw...

Full description

Bibliographic Details
Main Authors: Olaotse Lokwalo Thabeng, Elhadi Adam, Stefania Merlo
Format: Article
Language:English
Published: Hindawi Limited 2019-01-01
Series:Journal of Spectroscopy
Online Access:http://dx.doi.org/10.1155/2019/5158465
Description
Summary:This study investigates the ability of field spectra measurements to discriminate between soils from non-sites (natural soils) and from archaeological sites, such as middens (rubbish-dumping areas) and animal byres. First, we tested whether there is a difference in the concentration of elements between different soil types using analysis of variance while random forest (RF) and forward variable selection (FVS) methods were used to select important soil elements for the classification of the archaeological sites. In the second approach, we evaluated the ability of field spectroscopy reflectance measurements to discriminate among nonsites, middens, vitrified dung, and nonvitrified dung byres. The guided regularised random forest (GRRF) was used to identify important wavelengths for the discrimination of abovementioned archaeological and nonarchaeological soils. Thereafter, the selected soil elements and wavelengths were used as input variables in the RF classification algorithm to classify the nonsites, middens, vitrified dung, and nonvitrified dung. The findings reveal that there is a significant difference in the composition of chemical elements and spectral signatures of nonsites, middens, vitrified dung, and nonvitrified dung. In summary, high classification accuracies achieved when using field spectroscopy data prove that remote sensing techniques can be used to exploit the spectral differences among the abovementioned soil types in mapping archaeological feature characteristics of farming communities’ settlements.
ISSN:2314-4920
2314-4939