Optimal 1-NN prototypes for pathological geometries
Using prototype methods to reduce the size of training datasets can drastically reduce the computational cost of classification with instance-based learning algorithms like the k-Nearest Neighbour classifier. The number and distribution of prototypes required for the classifier to match its original...
Main Authors: | Ilia Sucholutsky, Matthias Schonlau |
---|---|
Format: | Article |
Language: | English |
Published: |
PeerJ Inc.
2021-04-01
|
Series: | PeerJ Computer Science |
Subjects: | |
Online Access: | https://peerj.com/articles/cs-464.pdf |
Similar Items
-
<i>k</i>NN Prototyping Schemes for Embedded Human Activity Recognition with Online Learning
by: Paulo J. S. Ferreira, et al.
Published: (2020-12-01) -
Estimation and Mapping Forest Attributes Using “k Nearest Neighbor” Method on IRS-P6 LISS III Satellite Image Data
by: Amir Eslam Bonyad
Published: (2015-06-01) -
Data Reduction in the String Space for Efficient kNN Classification through Space Partitioning
by: Jose J. Valero-Mas, et al.
Published: (2020-05-01) -
Klasifikasi Sel Darah Putih Berdasarkan Ciri Warna dan Bentuk dengan Metode K-Nearest Neighbor (K-NN)
by: Mizan Nur Khasanah, et al.
Published: (2016-10-01) -
應用文字探勘分析網路團購商品群集之研究 -以美食類商品為例
by: 趙婉婷