Supervariable Approach to the Nilpotent Symmetries for a Toy Model of the Hodge Theory
We exploit the standard techniques of the supervariable approach to derive the nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for a toy model of the Hodge theory (i.e., a rigid rotor) and provide the geometrical meaning and interpretation to them. Furthermore, we a...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2016-01-01
|
Series: | Advances in High Energy Physics |
Online Access: | http://dx.doi.org/10.1155/2016/2618150 |
id |
doaj-24cc85d0aea5418b957980a8dce2c4af |
---|---|
record_format |
Article |
spelling |
doaj-24cc85d0aea5418b957980a8dce2c4af2020-11-24T22:32:48ZengHindawi LimitedAdvances in High Energy Physics1687-73571687-73652016-01-01201610.1155/2016/26181502618150Supervariable Approach to the Nilpotent Symmetries for a Toy Model of the Hodge TheoryD. Shukla0T. Bhanja1R. P. Malik2Physics Department, Centre of Advanced Studies, Banaras Hindu University, Varanasi 221 005, IndiaPhysics Department, Centre of Advanced Studies, Banaras Hindu University, Varanasi 221 005, IndiaPhysics Department, Centre of Advanced Studies, Banaras Hindu University, Varanasi 221 005, IndiaWe exploit the standard techniques of the supervariable approach to derive the nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for a toy model of the Hodge theory (i.e., a rigid rotor) and provide the geometrical meaning and interpretation to them. Furthermore, we also derive the nilpotent (anti-)co-BRST symmetry transformations for this theory within the framework of the above supervariable approach. We capture the (anti-)BRST and (anti-)co-BRST invariance of the Lagrangian of our present theory within the framework of augmented supervariable formalism. We also express the (anti-)BRST and (anti-)co-BRST charges in terms of the supervariables (obtained after the application of the (dual-)horizontality conditions and (anti-)BRST and (anti-)co-BRST invariant restrictions) to provide the geometrical interpretations for their nilpotency and anticommutativity properties. The application of the dual-horizontality condition and ensuing proper (i.e., nilpotent and absolutely anticommuting) fermionic (anti-)co-BRST symmetries are completely novel results in our present investigation.http://dx.doi.org/10.1155/2016/2618150 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
D. Shukla T. Bhanja R. P. Malik |
spellingShingle |
D. Shukla T. Bhanja R. P. Malik Supervariable Approach to the Nilpotent Symmetries for a Toy Model of the Hodge Theory Advances in High Energy Physics |
author_facet |
D. Shukla T. Bhanja R. P. Malik |
author_sort |
D. Shukla |
title |
Supervariable Approach to the Nilpotent Symmetries for a Toy Model of the Hodge Theory |
title_short |
Supervariable Approach to the Nilpotent Symmetries for a Toy Model of the Hodge Theory |
title_full |
Supervariable Approach to the Nilpotent Symmetries for a Toy Model of the Hodge Theory |
title_fullStr |
Supervariable Approach to the Nilpotent Symmetries for a Toy Model of the Hodge Theory |
title_full_unstemmed |
Supervariable Approach to the Nilpotent Symmetries for a Toy Model of the Hodge Theory |
title_sort |
supervariable approach to the nilpotent symmetries for a toy model of the hodge theory |
publisher |
Hindawi Limited |
series |
Advances in High Energy Physics |
issn |
1687-7357 1687-7365 |
publishDate |
2016-01-01 |
description |
We exploit the standard techniques of the supervariable approach to derive the nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for a toy model of the Hodge theory (i.e., a rigid rotor) and provide the geometrical meaning and interpretation to them. Furthermore, we also derive the nilpotent (anti-)co-BRST symmetry transformations for this theory within the framework of the above supervariable approach. We capture the (anti-)BRST and (anti-)co-BRST invariance of the Lagrangian of our present theory within the framework of augmented supervariable formalism. We also express the (anti-)BRST and (anti-)co-BRST charges in terms of the supervariables (obtained after the application of the (dual-)horizontality conditions and (anti-)BRST and (anti-)co-BRST invariant restrictions) to provide the geometrical interpretations for their nilpotency and anticommutativity properties. The application of the dual-horizontality condition and ensuing proper (i.e., nilpotent and absolutely anticommuting) fermionic (anti-)co-BRST symmetries are completely novel results in our present investigation. |
url |
http://dx.doi.org/10.1155/2016/2618150 |
work_keys_str_mv |
AT dshukla supervariableapproachtothenilpotentsymmetriesforatoymodelofthehodgetheory AT tbhanja supervariableapproachtothenilpotentsymmetriesforatoymodelofthehodgetheory AT rpmalik supervariableapproachtothenilpotentsymmetriesforatoymodelofthehodgetheory |
_version_ |
1725732366461173760 |