On the Relevance of Natural Stimuli for the Study of Brainstem Correlates: The Example of Consonance Perception.
Some combinations of musical tones sound pleasing to Western listeners, and are termed consonant, while others sound discordant, and are termed dissonant. The perceptual phenomenon of consonance has been traced to the acoustic property of harmonicity. It has been repeatedly shown that neural correla...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2015-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4697839?pdf=render |
id |
doaj-24c9620d4011474fbd509a38940d6f9c |
---|---|
record_format |
Article |
spelling |
doaj-24c9620d4011474fbd509a38940d6f9c2020-11-25T00:05:48ZengPublic Library of Science (PLoS)PLoS ONE1932-62032015-01-011012e014543910.1371/journal.pone.0145439On the Relevance of Natural Stimuli for the Study of Brainstem Correlates: The Example of Consonance Perception.Marion CousineauGavin M BidelmanIsabelle PeretzAlexandre LehmannSome combinations of musical tones sound pleasing to Western listeners, and are termed consonant, while others sound discordant, and are termed dissonant. The perceptual phenomenon of consonance has been traced to the acoustic property of harmonicity. It has been repeatedly shown that neural correlates of consonance can be found as early as the auditory brainstem as reflected in the harmonicity of the scalp-recorded frequency-following response (FFR). "Neural Pitch Salience" (NPS) measured from FFRs-essentially a time-domain equivalent of the classic pattern recognition models of pitch-has been found to correlate with behavioral judgments of consonance for synthetic stimuli. Following the idea that the auditory system has evolved to process behaviorally relevant natural sounds, and in order to test the generalizability of this finding made with synthetic tones, we recorded FFRs for consonant and dissonant intervals composed of synthetic and natural stimuli. We found that NPS correlated with behavioral judgments of consonance and dissonance for synthetic but not for naturalistic sounds. These results suggest that while some form of harmonicity can be computed from the auditory brainstem response, the general percept of consonance and dissonance is not captured by this measure. It might either be represented in the brainstem in a different code (such as place code) or arise at higher levels of the auditory pathway. Our findings further illustrate the importance of using natural sounds, as a complementary tool to fully-controlled synthetic sounds, when probing auditory perception.http://europepmc.org/articles/PMC4697839?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Marion Cousineau Gavin M Bidelman Isabelle Peretz Alexandre Lehmann |
spellingShingle |
Marion Cousineau Gavin M Bidelman Isabelle Peretz Alexandre Lehmann On the Relevance of Natural Stimuli for the Study of Brainstem Correlates: The Example of Consonance Perception. PLoS ONE |
author_facet |
Marion Cousineau Gavin M Bidelman Isabelle Peretz Alexandre Lehmann |
author_sort |
Marion Cousineau |
title |
On the Relevance of Natural Stimuli for the Study of Brainstem Correlates: The Example of Consonance Perception. |
title_short |
On the Relevance of Natural Stimuli for the Study of Brainstem Correlates: The Example of Consonance Perception. |
title_full |
On the Relevance of Natural Stimuli for the Study of Brainstem Correlates: The Example of Consonance Perception. |
title_fullStr |
On the Relevance of Natural Stimuli for the Study of Brainstem Correlates: The Example of Consonance Perception. |
title_full_unstemmed |
On the Relevance of Natural Stimuli for the Study of Brainstem Correlates: The Example of Consonance Perception. |
title_sort |
on the relevance of natural stimuli for the study of brainstem correlates: the example of consonance perception. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2015-01-01 |
description |
Some combinations of musical tones sound pleasing to Western listeners, and are termed consonant, while others sound discordant, and are termed dissonant. The perceptual phenomenon of consonance has been traced to the acoustic property of harmonicity. It has been repeatedly shown that neural correlates of consonance can be found as early as the auditory brainstem as reflected in the harmonicity of the scalp-recorded frequency-following response (FFR). "Neural Pitch Salience" (NPS) measured from FFRs-essentially a time-domain equivalent of the classic pattern recognition models of pitch-has been found to correlate with behavioral judgments of consonance for synthetic stimuli. Following the idea that the auditory system has evolved to process behaviorally relevant natural sounds, and in order to test the generalizability of this finding made with synthetic tones, we recorded FFRs for consonant and dissonant intervals composed of synthetic and natural stimuli. We found that NPS correlated with behavioral judgments of consonance and dissonance for synthetic but not for naturalistic sounds. These results suggest that while some form of harmonicity can be computed from the auditory brainstem response, the general percept of consonance and dissonance is not captured by this measure. It might either be represented in the brainstem in a different code (such as place code) or arise at higher levels of the auditory pathway. Our findings further illustrate the importance of using natural sounds, as a complementary tool to fully-controlled synthetic sounds, when probing auditory perception. |
url |
http://europepmc.org/articles/PMC4697839?pdf=render |
work_keys_str_mv |
AT marioncousineau ontherelevanceofnaturalstimuliforthestudyofbrainstemcorrelatestheexampleofconsonanceperception AT gavinmbidelman ontherelevanceofnaturalstimuliforthestudyofbrainstemcorrelatestheexampleofconsonanceperception AT isabelleperetz ontherelevanceofnaturalstimuliforthestudyofbrainstemcorrelatestheexampleofconsonanceperception AT alexandrelehmann ontherelevanceofnaturalstimuliforthestudyofbrainstemcorrelatestheexampleofconsonanceperception |
_version_ |
1725423416864931840 |