Creation of Negatively Charged Boron Vacancies in Hexagonal Boron Nitride Crystal by Electron Irradiation and Mechanism of Inhomogeneous Broadening of Boron Vacancy-Related Spin Resonance Lines
Optically addressable high-spin states (S ≥ 1) of defects in semiconductors are the basis for the development of solid-state quantum technologies. Recently, one such defect has been found in hexagonal boron nitride (hBN) and identified as a negatively charged boron vacancy (<inline-formula><...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-05-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-4991/11/6/1373 |
id |
doaj-24b328e967544092801b1ca55560041c |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Fadis F. Murzakhanov Boris V. Yavkin Georgiy V. Mamin Sergei B. Orlinskii Ivan E. Mumdzhi Irina N. Gracheva Bulat F. Gabbasov Alexander N. Smirnov Valery Yu. Davydov Victor A. Soltamov |
spellingShingle |
Fadis F. Murzakhanov Boris V. Yavkin Georgiy V. Mamin Sergei B. Orlinskii Ivan E. Mumdzhi Irina N. Gracheva Bulat F. Gabbasov Alexander N. Smirnov Valery Yu. Davydov Victor A. Soltamov Creation of Negatively Charged Boron Vacancies in Hexagonal Boron Nitride Crystal by Electron Irradiation and Mechanism of Inhomogeneous Broadening of Boron Vacancy-Related Spin Resonance Lines Nanomaterials van der Waals materials hBN boron vacancies optical spin polarization electron spin resonance crystalline quality control |
author_facet |
Fadis F. Murzakhanov Boris V. Yavkin Georgiy V. Mamin Sergei B. Orlinskii Ivan E. Mumdzhi Irina N. Gracheva Bulat F. Gabbasov Alexander N. Smirnov Valery Yu. Davydov Victor A. Soltamov |
author_sort |
Fadis F. Murzakhanov |
title |
Creation of Negatively Charged Boron Vacancies in Hexagonal Boron Nitride Crystal by Electron Irradiation and Mechanism of Inhomogeneous Broadening of Boron Vacancy-Related Spin Resonance Lines |
title_short |
Creation of Negatively Charged Boron Vacancies in Hexagonal Boron Nitride Crystal by Electron Irradiation and Mechanism of Inhomogeneous Broadening of Boron Vacancy-Related Spin Resonance Lines |
title_full |
Creation of Negatively Charged Boron Vacancies in Hexagonal Boron Nitride Crystal by Electron Irradiation and Mechanism of Inhomogeneous Broadening of Boron Vacancy-Related Spin Resonance Lines |
title_fullStr |
Creation of Negatively Charged Boron Vacancies in Hexagonal Boron Nitride Crystal by Electron Irradiation and Mechanism of Inhomogeneous Broadening of Boron Vacancy-Related Spin Resonance Lines |
title_full_unstemmed |
Creation of Negatively Charged Boron Vacancies in Hexagonal Boron Nitride Crystal by Electron Irradiation and Mechanism of Inhomogeneous Broadening of Boron Vacancy-Related Spin Resonance Lines |
title_sort |
creation of negatively charged boron vacancies in hexagonal boron nitride crystal by electron irradiation and mechanism of inhomogeneous broadening of boron vacancy-related spin resonance lines |
publisher |
MDPI AG |
series |
Nanomaterials |
issn |
2079-4991 |
publishDate |
2021-05-01 |
description |
Optically addressable high-spin states (S ≥ 1) of defects in semiconductors are the basis for the development of solid-state quantum technologies. Recently, one such defect has been found in hexagonal boron nitride (hBN) and identified as a negatively charged boron vacancy (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="normal">V</mi><mi mathvariant="normal">B</mi><mo>−</mo></msubsup></mrow></semantics></math></inline-formula>). To explore and utilize the properties of this defect, one needs to design a robust way for its creation in an hBN crystal. We investigate the possibility of creating <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="normal">V</mi><mi mathvariant="normal">B</mi><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> centers in an hBN single crystal by means of irradiation with a high-energy (E = 2 MeV) electron flux. Optical excitation of the irradiated sample induces fluorescence in the near-infrared range together with the electron spin resonance (ESR) spectrum of the triplet centers with a zero-field splitting value of <i>D</i> = 3.6 GHz, manifesting an optically induced population inversion of the ground state spin sublevels. These observations are the signatures of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="normal">V</mi><mi mathvariant="normal">B</mi><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> centers and demonstrate that electron irradiation can be reliably used to create these centers in hBN. Exploration of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="normal">V</mi><mi mathvariant="normal">B</mi><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> spin resonance line shape allowed us to establish the source of the line broadening, which occurs due to the slight deviation in orientation of the two-dimensional B-N atomic plains being exactly parallel relative to each other. The results of the analysis of the broadening mechanism can be used for the crystalline quality control of the 2D materials, using the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="normal">V</mi><mi mathvariant="normal">B</mi><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> spin embedded in the hBN as a probe. |
topic |
van der Waals materials hBN boron vacancies optical spin polarization electron spin resonance crystalline quality control |
url |
https://www.mdpi.com/2079-4991/11/6/1373 |
work_keys_str_mv |
AT fadisfmurzakhanov creationofnegativelychargedboronvacanciesinhexagonalboronnitridecrystalbyelectronirradiationandmechanismofinhomogeneousbroadeningofboronvacancyrelatedspinresonancelines AT borisvyavkin creationofnegativelychargedboronvacanciesinhexagonalboronnitridecrystalbyelectronirradiationandmechanismofinhomogeneousbroadeningofboronvacancyrelatedspinresonancelines AT georgiyvmamin creationofnegativelychargedboronvacanciesinhexagonalboronnitridecrystalbyelectronirradiationandmechanismofinhomogeneousbroadeningofboronvacancyrelatedspinresonancelines AT sergeiborlinskii creationofnegativelychargedboronvacanciesinhexagonalboronnitridecrystalbyelectronirradiationandmechanismofinhomogeneousbroadeningofboronvacancyrelatedspinresonancelines AT ivanemumdzhi creationofnegativelychargedboronvacanciesinhexagonalboronnitridecrystalbyelectronirradiationandmechanismofinhomogeneousbroadeningofboronvacancyrelatedspinresonancelines AT irinangracheva creationofnegativelychargedboronvacanciesinhexagonalboronnitridecrystalbyelectronirradiationandmechanismofinhomogeneousbroadeningofboronvacancyrelatedspinresonancelines AT bulatfgabbasov creationofnegativelychargedboronvacanciesinhexagonalboronnitridecrystalbyelectronirradiationandmechanismofinhomogeneousbroadeningofboronvacancyrelatedspinresonancelines AT alexandernsmirnov creationofnegativelychargedboronvacanciesinhexagonalboronnitridecrystalbyelectronirradiationandmechanismofinhomogeneousbroadeningofboronvacancyrelatedspinresonancelines AT valeryyudavydov creationofnegativelychargedboronvacanciesinhexagonalboronnitridecrystalbyelectronirradiationandmechanismofinhomogeneousbroadeningofboronvacancyrelatedspinresonancelines AT victorasoltamov creationofnegativelychargedboronvacanciesinhexagonalboronnitridecrystalbyelectronirradiationandmechanismofinhomogeneousbroadeningofboronvacancyrelatedspinresonancelines |
_version_ |
1721413837231489024 |
spelling |
doaj-24b328e967544092801b1ca55560041c2021-06-01T00:47:33ZengMDPI AGNanomaterials2079-49912021-05-01111373137310.3390/nano11061373Creation of Negatively Charged Boron Vacancies in Hexagonal Boron Nitride Crystal by Electron Irradiation and Mechanism of Inhomogeneous Broadening of Boron Vacancy-Related Spin Resonance LinesFadis F. Murzakhanov0Boris V. Yavkin1Georgiy V. Mamin2Sergei B. Orlinskii3Ivan E. Mumdzhi4Irina N. Gracheva5Bulat F. Gabbasov6Alexander N. Smirnov7Valery Yu. Davydov8Victor A. Soltamov9Institute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, RussiaInstitute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, RussiaInstitute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, RussiaInstitute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, RussiaInstitute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, RussiaInstitute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, RussiaInstitute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, RussiaDivision of Solid State Physics, Ioffe Institute, Politekhnicheskaya 26, 194021 St. Petersburg, RussiaDivision of Solid State Physics, Ioffe Institute, Politekhnicheskaya 26, 194021 St. Petersburg, RussiaInstitute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, RussiaOptically addressable high-spin states (S ≥ 1) of defects in semiconductors are the basis for the development of solid-state quantum technologies. Recently, one such defect has been found in hexagonal boron nitride (hBN) and identified as a negatively charged boron vacancy (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="normal">V</mi><mi mathvariant="normal">B</mi><mo>−</mo></msubsup></mrow></semantics></math></inline-formula>). To explore and utilize the properties of this defect, one needs to design a robust way for its creation in an hBN crystal. We investigate the possibility of creating <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="normal">V</mi><mi mathvariant="normal">B</mi><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> centers in an hBN single crystal by means of irradiation with a high-energy (E = 2 MeV) electron flux. Optical excitation of the irradiated sample induces fluorescence in the near-infrared range together with the electron spin resonance (ESR) spectrum of the triplet centers with a zero-field splitting value of <i>D</i> = 3.6 GHz, manifesting an optically induced population inversion of the ground state spin sublevels. These observations are the signatures of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="normal">V</mi><mi mathvariant="normal">B</mi><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> centers and demonstrate that electron irradiation can be reliably used to create these centers in hBN. Exploration of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="normal">V</mi><mi mathvariant="normal">B</mi><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> spin resonance line shape allowed us to establish the source of the line broadening, which occurs due to the slight deviation in orientation of the two-dimensional B-N atomic plains being exactly parallel relative to each other. The results of the analysis of the broadening mechanism can be used for the crystalline quality control of the 2D materials, using the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="normal">V</mi><mi mathvariant="normal">B</mi><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> spin embedded in the hBN as a probe.https://www.mdpi.com/2079-4991/11/6/1373van der Waals materialshBNboron vacanciesoptical spin polarizationelectron spin resonancecrystalline quality control |