Creation of Negatively Charged Boron Vacancies in Hexagonal Boron Nitride Crystal by Electron Irradiation and Mechanism of Inhomogeneous Broadening of Boron Vacancy-Related Spin Resonance Lines

Optically addressable high-spin states (S ≥ 1) of defects in semiconductors are the basis for the development of solid-state quantum technologies. Recently, one such defect has been found in hexagonal boron nitride (hBN) and identified as a negatively charged boron vacancy (<inline-formula><...

Full description

Bibliographic Details
Main Authors: Fadis F. Murzakhanov, Boris V. Yavkin, Georgiy V. Mamin, Sergei B. Orlinskii, Ivan E. Mumdzhi, Irina N. Gracheva, Bulat F. Gabbasov, Alexander N. Smirnov, Valery Yu. Davydov, Victor A. Soltamov
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Nanomaterials
Subjects:
hBN
Online Access:https://www.mdpi.com/2079-4991/11/6/1373
id doaj-24b328e967544092801b1ca55560041c
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Fadis F. Murzakhanov
Boris V. Yavkin
Georgiy V. Mamin
Sergei B. Orlinskii
Ivan E. Mumdzhi
Irina N. Gracheva
Bulat F. Gabbasov
Alexander N. Smirnov
Valery Yu. Davydov
Victor A. Soltamov
spellingShingle Fadis F. Murzakhanov
Boris V. Yavkin
Georgiy V. Mamin
Sergei B. Orlinskii
Ivan E. Mumdzhi
Irina N. Gracheva
Bulat F. Gabbasov
Alexander N. Smirnov
Valery Yu. Davydov
Victor A. Soltamov
Creation of Negatively Charged Boron Vacancies in Hexagonal Boron Nitride Crystal by Electron Irradiation and Mechanism of Inhomogeneous Broadening of Boron Vacancy-Related Spin Resonance Lines
Nanomaterials
van der Waals materials
hBN
boron vacancies
optical spin polarization
electron spin resonance
crystalline quality control
author_facet Fadis F. Murzakhanov
Boris V. Yavkin
Georgiy V. Mamin
Sergei B. Orlinskii
Ivan E. Mumdzhi
Irina N. Gracheva
Bulat F. Gabbasov
Alexander N. Smirnov
Valery Yu. Davydov
Victor A. Soltamov
author_sort Fadis F. Murzakhanov
title Creation of Negatively Charged Boron Vacancies in Hexagonal Boron Nitride Crystal by Electron Irradiation and Mechanism of Inhomogeneous Broadening of Boron Vacancy-Related Spin Resonance Lines
title_short Creation of Negatively Charged Boron Vacancies in Hexagonal Boron Nitride Crystal by Electron Irradiation and Mechanism of Inhomogeneous Broadening of Boron Vacancy-Related Spin Resonance Lines
title_full Creation of Negatively Charged Boron Vacancies in Hexagonal Boron Nitride Crystal by Electron Irradiation and Mechanism of Inhomogeneous Broadening of Boron Vacancy-Related Spin Resonance Lines
title_fullStr Creation of Negatively Charged Boron Vacancies in Hexagonal Boron Nitride Crystal by Electron Irradiation and Mechanism of Inhomogeneous Broadening of Boron Vacancy-Related Spin Resonance Lines
title_full_unstemmed Creation of Negatively Charged Boron Vacancies in Hexagonal Boron Nitride Crystal by Electron Irradiation and Mechanism of Inhomogeneous Broadening of Boron Vacancy-Related Spin Resonance Lines
title_sort creation of negatively charged boron vacancies in hexagonal boron nitride crystal by electron irradiation and mechanism of inhomogeneous broadening of boron vacancy-related spin resonance lines
publisher MDPI AG
series Nanomaterials
issn 2079-4991
publishDate 2021-05-01
description Optically addressable high-spin states (S ≥ 1) of defects in semiconductors are the basis for the development of solid-state quantum technologies. Recently, one such defect has been found in hexagonal boron nitride (hBN) and identified as a negatively charged boron vacancy (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="normal">V</mi><mi mathvariant="normal">B</mi><mo>−</mo></msubsup></mrow></semantics></math></inline-formula>). To explore and utilize the properties of this defect, one needs to design a robust way for its creation in an hBN crystal. We investigate the possibility of creating <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="normal">V</mi><mi mathvariant="normal">B</mi><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> centers in an hBN single crystal by means of irradiation with a high-energy (E = 2 MeV) electron flux. Optical excitation of the irradiated sample induces fluorescence in the near-infrared range together with the electron spin resonance (ESR) spectrum of the triplet centers with a zero-field splitting value of <i>D</i> = 3.6 GHz, manifesting an optically induced population inversion of the ground state spin sublevels. These observations are the signatures of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="normal">V</mi><mi mathvariant="normal">B</mi><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> centers and demonstrate that electron irradiation can be reliably used to create these centers in hBN. Exploration of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="normal">V</mi><mi mathvariant="normal">B</mi><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> spin resonance line shape allowed us to establish the source of the line broadening, which occurs due to the slight deviation in orientation of the two-dimensional B-N atomic plains being exactly parallel relative to each other. The results of the analysis of the broadening mechanism can be used for the crystalline quality control of the 2D materials, using the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="normal">V</mi><mi mathvariant="normal">B</mi><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> spin embedded in the hBN as a probe.
topic van der Waals materials
hBN
boron vacancies
optical spin polarization
electron spin resonance
crystalline quality control
url https://www.mdpi.com/2079-4991/11/6/1373
work_keys_str_mv AT fadisfmurzakhanov creationofnegativelychargedboronvacanciesinhexagonalboronnitridecrystalbyelectronirradiationandmechanismofinhomogeneousbroadeningofboronvacancyrelatedspinresonancelines
AT borisvyavkin creationofnegativelychargedboronvacanciesinhexagonalboronnitridecrystalbyelectronirradiationandmechanismofinhomogeneousbroadeningofboronvacancyrelatedspinresonancelines
AT georgiyvmamin creationofnegativelychargedboronvacanciesinhexagonalboronnitridecrystalbyelectronirradiationandmechanismofinhomogeneousbroadeningofboronvacancyrelatedspinresonancelines
AT sergeiborlinskii creationofnegativelychargedboronvacanciesinhexagonalboronnitridecrystalbyelectronirradiationandmechanismofinhomogeneousbroadeningofboronvacancyrelatedspinresonancelines
AT ivanemumdzhi creationofnegativelychargedboronvacanciesinhexagonalboronnitridecrystalbyelectronirradiationandmechanismofinhomogeneousbroadeningofboronvacancyrelatedspinresonancelines
AT irinangracheva creationofnegativelychargedboronvacanciesinhexagonalboronnitridecrystalbyelectronirradiationandmechanismofinhomogeneousbroadeningofboronvacancyrelatedspinresonancelines
AT bulatfgabbasov creationofnegativelychargedboronvacanciesinhexagonalboronnitridecrystalbyelectronirradiationandmechanismofinhomogeneousbroadeningofboronvacancyrelatedspinresonancelines
AT alexandernsmirnov creationofnegativelychargedboronvacanciesinhexagonalboronnitridecrystalbyelectronirradiationandmechanismofinhomogeneousbroadeningofboronvacancyrelatedspinresonancelines
AT valeryyudavydov creationofnegativelychargedboronvacanciesinhexagonalboronnitridecrystalbyelectronirradiationandmechanismofinhomogeneousbroadeningofboronvacancyrelatedspinresonancelines
AT victorasoltamov creationofnegativelychargedboronvacanciesinhexagonalboronnitridecrystalbyelectronirradiationandmechanismofinhomogeneousbroadeningofboronvacancyrelatedspinresonancelines
_version_ 1721413837231489024
spelling doaj-24b328e967544092801b1ca55560041c2021-06-01T00:47:33ZengMDPI AGNanomaterials2079-49912021-05-01111373137310.3390/nano11061373Creation of Negatively Charged Boron Vacancies in Hexagonal Boron Nitride Crystal by Electron Irradiation and Mechanism of Inhomogeneous Broadening of Boron Vacancy-Related Spin Resonance LinesFadis F. Murzakhanov0Boris V. Yavkin1Georgiy V. Mamin2Sergei B. Orlinskii3Ivan E. Mumdzhi4Irina N. Gracheva5Bulat F. Gabbasov6Alexander N. Smirnov7Valery Yu. Davydov8Victor A. Soltamov9Institute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, RussiaInstitute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, RussiaInstitute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, RussiaInstitute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, RussiaInstitute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, RussiaInstitute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, RussiaInstitute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, RussiaDivision of Solid State Physics, Ioffe Institute, Politekhnicheskaya 26, 194021 St. Petersburg, RussiaDivision of Solid State Physics, Ioffe Institute, Politekhnicheskaya 26, 194021 St. Petersburg, RussiaInstitute of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, RussiaOptically addressable high-spin states (S ≥ 1) of defects in semiconductors are the basis for the development of solid-state quantum technologies. Recently, one such defect has been found in hexagonal boron nitride (hBN) and identified as a negatively charged boron vacancy (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="normal">V</mi><mi mathvariant="normal">B</mi><mo>−</mo></msubsup></mrow></semantics></math></inline-formula>). To explore and utilize the properties of this defect, one needs to design a robust way for its creation in an hBN crystal. We investigate the possibility of creating <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="normal">V</mi><mi mathvariant="normal">B</mi><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> centers in an hBN single crystal by means of irradiation with a high-energy (E = 2 MeV) electron flux. Optical excitation of the irradiated sample induces fluorescence in the near-infrared range together with the electron spin resonance (ESR) spectrum of the triplet centers with a zero-field splitting value of <i>D</i> = 3.6 GHz, manifesting an optically induced population inversion of the ground state spin sublevels. These observations are the signatures of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="normal">V</mi><mi mathvariant="normal">B</mi><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> centers and demonstrate that electron irradiation can be reliably used to create these centers in hBN. Exploration of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="normal">V</mi><mi mathvariant="normal">B</mi><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> spin resonance line shape allowed us to establish the source of the line broadening, which occurs due to the slight deviation in orientation of the two-dimensional B-N atomic plains being exactly parallel relative to each other. The results of the analysis of the broadening mechanism can be used for the crystalline quality control of the 2D materials, using the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="normal">V</mi><mi mathvariant="normal">B</mi><mo>−</mo></msubsup></mrow></semantics></math></inline-formula> spin embedded in the hBN as a probe.https://www.mdpi.com/2079-4991/11/6/1373van der Waals materialshBNboron vacanciesoptical spin polarizationelectron spin resonancecrystalline quality control