On existence and multiplicity for Schrödinger–Poisson systems involving weighted sublinear nonlinearities

We deal with existence and multiplicity for the following class of nonhomogeneous Schrödinger–Poisson systems \begin{equation*} \begin{cases} -\Delta u + V(x) u + K(x) \phi(x) u = f(x, u) + g(x) \quad & \text{in } \mathbb{R}^3, \\ -\Delta \phi = K(x) u^2 \quad & \text{in } \mathbb{R}^...

Full description

Bibliographic Details
Main Author: Sara Barile
Format: Article
Language:English
Published: University of Szeged 2017-04-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=5492
id doaj-24a6631f9c764697a986a432272a3db5
record_format Article
spelling doaj-24a6631f9c764697a986a432272a3db52021-07-14T07:21:29ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752017-04-0120172112110.14232/ejqtde.2017.1.215492On existence and multiplicity for Schrödinger–Poisson systems involving weighted sublinear nonlinearitiesSara Barile0Dipartimento di Matematica, Università degli Studi di Bari Aldo Moro, Bari, ItalyWe deal with existence and multiplicity for the following class of nonhomogeneous Schrödinger–Poisson systems \begin{equation*} \begin{cases} -\Delta u + V(x) u + K(x) \phi(x) u = f(x, u) + g(x) \quad & \text{in } \mathbb{R}^3, \\ -\Delta \phi = K(x) u^2 \quad & \text{in } \mathbb{R}^3, \end{cases} \end{equation*} where $V, K: \mathbb{R}^3 \rightarrow \mathbb{R}^+$ are suitable potentials and $f: \mathbb{R}^3 \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies sublinear growth assumptions involving a finite number of positive weights $W_i$, $i= 1,\dots,r$ with $r \geq 1$. By exploiting compact embeddings of the functional space on which we work in every weighted space $L_{W_i}^{w_i}(\mathbb{R}^3)$, $w_i \in (1, 2)$, we establish existence by means of a generalized Weierstrass theorem. Moreover, we prove multiplicity of solutions if $f$ is odd in $u$ and $g(x) \equiv 0$ thanks to a variant of the symmetric mountain pass theorem stated by R. Kajikiya for subquadratic functionals.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=5492schrödinger–poisson systemssublinear nonlinearitiesvariational methodscompact embeddings
collection DOAJ
language English
format Article
sources DOAJ
author Sara Barile
spellingShingle Sara Barile
On existence and multiplicity for Schrödinger–Poisson systems involving weighted sublinear nonlinearities
Electronic Journal of Qualitative Theory of Differential Equations
schrödinger–poisson systems
sublinear nonlinearities
variational methods
compact embeddings
author_facet Sara Barile
author_sort Sara Barile
title On existence and multiplicity for Schrödinger–Poisson systems involving weighted sublinear nonlinearities
title_short On existence and multiplicity for Schrödinger–Poisson systems involving weighted sublinear nonlinearities
title_full On existence and multiplicity for Schrödinger–Poisson systems involving weighted sublinear nonlinearities
title_fullStr On existence and multiplicity for Schrödinger–Poisson systems involving weighted sublinear nonlinearities
title_full_unstemmed On existence and multiplicity for Schrödinger–Poisson systems involving weighted sublinear nonlinearities
title_sort on existence and multiplicity for schrödinger–poisson systems involving weighted sublinear nonlinearities
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2017-04-01
description We deal with existence and multiplicity for the following class of nonhomogeneous Schrödinger–Poisson systems \begin{equation*} \begin{cases} -\Delta u + V(x) u + K(x) \phi(x) u = f(x, u) + g(x) \quad & \text{in } \mathbb{R}^3, \\ -\Delta \phi = K(x) u^2 \quad & \text{in } \mathbb{R}^3, \end{cases} \end{equation*} where $V, K: \mathbb{R}^3 \rightarrow \mathbb{R}^+$ are suitable potentials and $f: \mathbb{R}^3 \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies sublinear growth assumptions involving a finite number of positive weights $W_i$, $i= 1,\dots,r$ with $r \geq 1$. By exploiting compact embeddings of the functional space on which we work in every weighted space $L_{W_i}^{w_i}(\mathbb{R}^3)$, $w_i \in (1, 2)$, we establish existence by means of a generalized Weierstrass theorem. Moreover, we prove multiplicity of solutions if $f$ is odd in $u$ and $g(x) \equiv 0$ thanks to a variant of the symmetric mountain pass theorem stated by R. Kajikiya for subquadratic functionals.
topic schrödinger–poisson systems
sublinear nonlinearities
variational methods
compact embeddings
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=5492
work_keys_str_mv AT sarabarile onexistenceandmultiplicityforschrodingerpoissonsystemsinvolvingweightedsublinearnonlinearities
_version_ 1721303565750763520