Analysis of mathematical model of leukemia

In this paper, a model describing the dynamic of chronic myeloid leukemia is studied. By analyzing the corresponding characteristic equations, the local stability of trivial and nontrivial equilibria are discussed. By establishing appropriate Lyapunov functions, we prove the global stability of the...

Full description

Bibliographic Details
Main Authors: Helal Mohamed, Adimy Mostafa, Lakmeche Abdelkader, Pujo-Menjouet Laurent
Format: Article
Language:English
Published: EDP Sciences 2015-01-01
Series:ITM Web of Conferences
Online Access:http://dx.doi.org/10.1051/itmconf/20150401005
id doaj-245e7244a0234264ba87cc0db7377596
record_format Article
spelling doaj-245e7244a0234264ba87cc0db73775962021-02-02T04:03:31ZengEDP SciencesITM Web of Conferences2271-20972015-01-0140100510.1051/itmconf/20150401005itmconf-wmls2014_01005Analysis of mathematical model of leukemiaHelal Mohamed0Adimy Mostafa1Lakmeche Abdelkader2Pujo-Menjouet Laurent3Laboratory of Biomathematics, Univ. Sidi Bel AbbesUniversité de Lyon, CNRS UMR 5208, Université Lyon 1, Institut Camille JordanLaboratory of Biomathematics, Univ. Sidi Bel AbbesUniversité de Lyon, CNRS UMR 5208, Université Lyon 1, Institut Camille JordanIn this paper, a model describing the dynamic of chronic myeloid leukemia is studied. By analyzing the corresponding characteristic equations, the local stability of trivial and nontrivial equilibria are discussed. By establishing appropriate Lyapunov functions, we prove the global stability of the positive constant equilibrium solutions.http://dx.doi.org/10.1051/itmconf/20150401005
collection DOAJ
language English
format Article
sources DOAJ
author Helal Mohamed
Adimy Mostafa
Lakmeche Abdelkader
Pujo-Menjouet Laurent
spellingShingle Helal Mohamed
Adimy Mostafa
Lakmeche Abdelkader
Pujo-Menjouet Laurent
Analysis of mathematical model of leukemia
ITM Web of Conferences
author_facet Helal Mohamed
Adimy Mostafa
Lakmeche Abdelkader
Pujo-Menjouet Laurent
author_sort Helal Mohamed
title Analysis of mathematical model of leukemia
title_short Analysis of mathematical model of leukemia
title_full Analysis of mathematical model of leukemia
title_fullStr Analysis of mathematical model of leukemia
title_full_unstemmed Analysis of mathematical model of leukemia
title_sort analysis of mathematical model of leukemia
publisher EDP Sciences
series ITM Web of Conferences
issn 2271-2097
publishDate 2015-01-01
description In this paper, a model describing the dynamic of chronic myeloid leukemia is studied. By analyzing the corresponding characteristic equations, the local stability of trivial and nontrivial equilibria are discussed. By establishing appropriate Lyapunov functions, we prove the global stability of the positive constant equilibrium solutions.
url http://dx.doi.org/10.1051/itmconf/20150401005
work_keys_str_mv AT helalmohamed analysisofmathematicalmodelofleukemia
AT adimymostafa analysisofmathematicalmodelofleukemia
AT lakmecheabdelkader analysisofmathematicalmodelofleukemia
AT pujomenjouetlaurent analysisofmathematicalmodelofleukemia
_version_ 1724306529557938176