Structure Optimization of Battery Thermal Management Systems Using Sensitivity Analysis and Stud Genetic Algorithms

Battery thermal management systems (BTMS) are hugely important in enhancing the lifecycle of batteries and promoting the development of electric vehicles. The cooling effect of BTMS can be improved by optimizing its structural parameters. In this paper, flow resistance and heat dissipation models we...

Full description

Bibliographic Details
Main Authors: Jiahui Chen, Dongji Xuan, Biao Wang, Rui Jiang
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/16/7440
Description
Summary:Battery thermal management systems (BTMS) are hugely important in enhancing the lifecycle of batteries and promoting the development of electric vehicles. The cooling effect of BTMS can be improved by optimizing its structural parameters. In this paper, flow resistance and heat dissipation models were used to optimize the structure of BTMS, which were more efficient than the computational fluid dynamics method. Subsequently, five structural parameters that affect the temperature inside the battery pack were analyzed using single-factor sensitivity analysis under different inlet airflow rates, and three structural parameters were selected as the constraints of a stud genetic algorithm. In this stud genetic algorithm, the maximal temperature difference obtained by the heat dissipation model was within 5K as the constraint function, where the objective function minimized the overall area of the battery pack. The BTMS optimized by the stud genetic algorithm was reduced by 16% in the maximal temperature difference and saved 6% of the battery package area compared with the original BTMS. It can be concluded that the stud genetic algorithm combined with the flow resistance network and heat dissipation models can quickly and efficiently optimize the air-cooled BTMS to improve the cooling performance.
ISSN:2076-3417