FRW and domain walls in higher spin gravity

Abstract We present exact solutions to Vasiliev’s bosonic higher spin gravity equations in four dimensions with positive and negative cosmological constant that admit an interpretation in terms of domain walls, quasi-instantons and Friedman-Robertson-Walker (FRW) backgrounds. Their isometry algebras...

Full description

Bibliographic Details
Main Authors: R. Aros, C. Iazeolla, J. Noreña, E. Sezgin, P. Sundell, Y. Yin
Format: Article
Language:English
Published: SpringerOpen 2018-03-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP03(2018)153
Description
Summary:Abstract We present exact solutions to Vasiliev’s bosonic higher spin gravity equations in four dimensions with positive and negative cosmological constant that admit an interpretation in terms of domain walls, quasi-instantons and Friedman-Robertson-Walker (FRW) backgrounds. Their isometry algebras are infinite dimensional higher-spin extensions of spacetime isometries generated by six Killing vectors. The solutions presented are obtained by using a method of holomorphic factorization in noncommutative twistor space and gauge functions. In interpreting the solutions in terms of Fronsdal-type fields in space-time, a field-dependent higher spin transformation is required, which is implemented at leading order. To this order, the scalar field solves Klein-Gordon equation with conformal mass in (A)dS 4 . We interpret the FRW solution with de Sitter asymptotics in the context of inflationary cosmology and we expect that the domain wall and FRW solutions are associated with spontaneously broken scaling symmetries in their holographic description. We observe that the factorization method provides a convenient framework for setting up a perturbation theory around the exact solutions, and we propose that the nonlinear completion of particle excitations over FRW and domain wall solutions requires black hole-like states.
ISSN:1029-8479