Personalized Immunotherapy Treatment Strategies for a Dynamical System of Chronic Myelogenous Leukemia
This paper is devoted to exploring personalized applications of cellular immunotherapy as a control strategy for the treatment of chronic myelogenous leukemia described by a dynamical system of three first-order ordinary differential equations. The latter was achieved by applying both the Localizati...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-04-01
|
Series: | Cancers |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-6694/13/9/2030 |
id |
doaj-241763a522e74876a5574057573d1d4b |
---|---|
record_format |
Article |
spelling |
doaj-241763a522e74876a5574057573d1d4b2021-04-22T23:06:00ZengMDPI AGCancers2072-66942021-04-01132030203010.3390/cancers13092030Personalized Immunotherapy Treatment Strategies for a Dynamical System of Chronic Myelogenous LeukemiaPaul A. Valle0Luis N. Coria1Corina Plata2Postgraduate Program in Engineering Sciences, BioMath Research Group, Tecnológico Nacional de México/IT, Tijuana 22500, MexicoPostgraduate Program in Engineering Sciences, BioMath Research Group, Tecnológico Nacional de México/IT, Tijuana 22500, MexicoPostgraduate Program in Engineering Sciences, BioMath Research Group, Tecnológico Nacional de México/IT, Tijuana 22500, MexicoThis paper is devoted to exploring personalized applications of cellular immunotherapy as a control strategy for the treatment of chronic myelogenous leukemia described by a dynamical system of three first-order ordinary differential equations. The latter was achieved by applying both the Localization of Compact Invariant Sets and Lyapunov’s stability theory. Combination of these two approaches allows us to establish sufficient conditions on the immunotherapy treatment parameter to ensure the complete eradication of the leukemia cancer cells. These conditions are given in terms of the system parameters and by performing several in silico experimentations, we formulated a protocol for the therapy application that completely eradicates the leukemia cancer cells population for different initial tumour concentrations. The formulated protocol does not dangerously increase the effector T cells population. Further, complete eradication is considered when solutions go below a finite critical value below which cancer cells cannot longer persist; i.e., one cancer cell. Numerical simulations are consistent with our analytical results.https://www.mdpi.com/2072-6694/13/9/2030leukemiaadaptive T-cell therapylocalizing domainasymptotic stabilityin silico |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Paul A. Valle Luis N. Coria Corina Plata |
spellingShingle |
Paul A. Valle Luis N. Coria Corina Plata Personalized Immunotherapy Treatment Strategies for a Dynamical System of Chronic Myelogenous Leukemia Cancers leukemia adaptive T-cell therapy localizing domain asymptotic stability in silico |
author_facet |
Paul A. Valle Luis N. Coria Corina Plata |
author_sort |
Paul A. Valle |
title |
Personalized Immunotherapy Treatment Strategies for a Dynamical System of Chronic Myelogenous Leukemia |
title_short |
Personalized Immunotherapy Treatment Strategies for a Dynamical System of Chronic Myelogenous Leukemia |
title_full |
Personalized Immunotherapy Treatment Strategies for a Dynamical System of Chronic Myelogenous Leukemia |
title_fullStr |
Personalized Immunotherapy Treatment Strategies for a Dynamical System of Chronic Myelogenous Leukemia |
title_full_unstemmed |
Personalized Immunotherapy Treatment Strategies for a Dynamical System of Chronic Myelogenous Leukemia |
title_sort |
personalized immunotherapy treatment strategies for a dynamical system of chronic myelogenous leukemia |
publisher |
MDPI AG |
series |
Cancers |
issn |
2072-6694 |
publishDate |
2021-04-01 |
description |
This paper is devoted to exploring personalized applications of cellular immunotherapy as a control strategy for the treatment of chronic myelogenous leukemia described by a dynamical system of three first-order ordinary differential equations. The latter was achieved by applying both the Localization of Compact Invariant Sets and Lyapunov’s stability theory. Combination of these two approaches allows us to establish sufficient conditions on the immunotherapy treatment parameter to ensure the complete eradication of the leukemia cancer cells. These conditions are given in terms of the system parameters and by performing several in silico experimentations, we formulated a protocol for the therapy application that completely eradicates the leukemia cancer cells population for different initial tumour concentrations. The formulated protocol does not dangerously increase the effector T cells population. Further, complete eradication is considered when solutions go below a finite critical value below which cancer cells cannot longer persist; i.e., one cancer cell. Numerical simulations are consistent with our analytical results. |
topic |
leukemia adaptive T-cell therapy localizing domain asymptotic stability in silico |
url |
https://www.mdpi.com/2072-6694/13/9/2030 |
work_keys_str_mv |
AT paulavalle personalizedimmunotherapytreatmentstrategiesforadynamicalsystemofchronicmyelogenousleukemia AT luisncoria personalizedimmunotherapytreatmentstrategiesforadynamicalsystemofchronicmyelogenousleukemia AT corinaplata personalizedimmunotherapytreatmentstrategiesforadynamicalsystemofchronicmyelogenousleukemia |
_version_ |
1721513634159394816 |