HO<sub><i>x</i></sub> and NO<sub><i>x</i></sub> production in oxidation flow reactors via photolysis of isopropyl nitrite, isopropyl nitrite-d<sub>7</sub>, and 1,3-propyl dinitrite at <i>λ</i> = 254, 350, and 369&thinsp;nm

<p>Oxidation flow reactors (OFRs) are an emerging technique for studying the formation and oxidative aging of organic aerosols and other applications. In these flow reactors, hydroxyl radicals (OH), hydroperoxyl radicals (<span class="inline-formula">HO<sub>2</sub>&...

Full description

Bibliographic Details
Main Authors: A. T. Lambe, J. E. Krechmer, Z. Peng, J. R. Casar, A. J. Carrasquillo, J. D. Raff, J. L. Jimenez, D. R. Worsnop
Format: Article
Language:English
Published: Copernicus Publications 2019-01-01
Series:Atmospheric Measurement Techniques
Online Access:https://www.atmos-meas-tech.net/12/299/2019/amt-12-299-2019.pdf
Description
Summary:<p>Oxidation flow reactors (OFRs) are an emerging technique for studying the formation and oxidative aging of organic aerosols and other applications. In these flow reactors, hydroxyl radicals (OH), hydroperoxyl radicals (<span class="inline-formula">HO<sub>2</sub></span>), and nitric oxide (NO) are typically produced in the following ways: photolysis of ozone (<span class="inline-formula">O<sub>3</sub></span>) at <span class="inline-formula"><i>λ</i>=25</span>4&thinsp;nm, photolysis of <span class="inline-formula">H<sub>2</sub>O</span> at <span class="inline-formula"><i>λ</i>=185</span>&thinsp;nm, and via reactions of <span class="inline-formula">O(<sup>1</sup>D)</span> with <span class="inline-formula">H<sub>2</sub>O</span> and nitrous oxide <span class="inline-formula">(N<sub>2</sub>O)</span>; <span class="inline-formula">O(<sup>1</sup>D)</span> is formed via photolysis of <span class="inline-formula">O<sub>3</sub></span> at <span class="inline-formula"><i>λ</i>=254</span>&thinsp;nm and/or <span class="inline-formula">N<sub>2</sub>O</span> at <span class="inline-formula"><i>λ</i>=185</span>&thinsp;nm. Here, we adapt a complementary method that uses alkyl nitrite photolysis as a source of OH via its production of <span class="inline-formula">HO<sub>2</sub></span> and NO followed by the reaction NO&thinsp;<span class="inline-formula">+</span>&thinsp;<span class="inline-formula">HO<sub>2</sub></span>&thinsp;<span class="inline-formula">→</span>&thinsp;<span class="inline-formula">NO<sub>2</sub></span>&thinsp;<span class="inline-formula">+</span>&thinsp;OH. We present experimental and model characterization of the OH exposure and <span class="inline-formula">NO<sub><i>x</i></sub></span> levels generated via photolysis of <span class="inline-formula">C<sub>3</sub></span> alkyl nitrites (isopropyl nitrite, perdeuterated isopropyl nitrite, 1,3-propyl dinitrite) in the Potential Aerosol Mass (PAM) OFR as a function of photolysis wavelength (<span class="inline-formula"><i>λ</i>=254</span> to 369&thinsp;nm) and organic nitrite concentration (0.5 to 20&thinsp;ppm). We also apply this technique in conjunction with chemical ionization mass spectrometer measurements of multifunctional oxidation products generated following the exposure of <span class="inline-formula"><i>α</i></span>-Pinene to <span class="inline-formula">HO<sub><i>x</i></sub></span> and <span class="inline-formula">NO<sub><i>x</i></sub></span> obtained using both isopropyl nitrite and <span class="inline-formula">O<sub>3</sub></span>&thinsp;<span class="inline-formula">+</span>&thinsp;<span class="inline-formula">H<sub>2</sub>O</span>&thinsp;<span class="inline-formula">+</span>&thinsp;<span class="inline-formula">N<sub>2</sub>O</span> as the radical precursors.</p>
ISSN:1867-1381
1867-8548