On the Norm of the Abelian <i>p</i>-Group-Residuals
Let <i>G</i> be a group. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</m...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-04-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/9/8/842 |
id |
doaj-23f3845c979c4a49910061a10fa0f67d |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Baojun Li Yu Han Lü Gong Tong Jiang |
spellingShingle |
Baojun Li Yu Han Lü Gong Tong Jiang On the Norm of the Abelian <i>p</i>-Group-Residuals Mathematics finite group abelian p-group residual soluble group normalizer |
author_facet |
Baojun Li Yu Han Lü Gong Tong Jiang |
author_sort |
Baojun Li |
title |
On the Norm of the Abelian <i>p</i>-Group-Residuals |
title_short |
On the Norm of the Abelian <i>p</i>-Group-Residuals |
title_full |
On the Norm of the Abelian <i>p</i>-Group-Residuals |
title_fullStr |
On the Norm of the Abelian <i>p</i>-Group-Residuals |
title_full_unstemmed |
On the Norm of the Abelian <i>p</i>-Group-Residuals |
title_sort |
on the norm of the abelian <i>p</i>-group-residuals |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2021-04-01 |
description |
Let <i>G</i> be a group. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mo>⋂</mo><mrow><mi>H</mi><mo>≤</mo><mi>G</mi></mrow></msub><msub><mi>N</mi><mi>G</mi></msub><mrow><mo>(</mo><msup><mi>H</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is defined and, the properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> are investigated. It is proved that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>P</mi><mrow><mo>[</mo><mi>A</mi><mo>]</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>=</mo><mi>D</mi><mo>(</mo><mi>P</mi><mo>)</mo></mrow></semantics></math></inline-formula> is the Sylow <i>p</i>-subgroup and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>=</mo><mi>N</mi><mo>(</mo><mi>A</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a Hall <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>p</mi><mo>′</mo></msup></semantics></math></inline-formula>-subgroup of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, respectively. Furthermore, it is proved in a group <i>G</i> that (1) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> if and only if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>G</mi></msub><mrow><mo>(</mo><msup><mi>G</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>; (2) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>O</mi><msup><mi>p</mi><mo>′</mo></msup></msub><mrow><mo>(</mo><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>≤</mo><msub><mi>Z</mi><mo>∞</mo></msub><mrow><mo>(</mo><msup><mi>O</mi><mi>p</mi></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and (3) if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Z</mi><mo>(</mo><msup><mi>G</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow><mo>)</mo><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>G</mi></msub><mrow><mo>(</mo><msup><mi>G</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. |
topic |
finite group abelian p-group residual soluble group normalizer |
url |
https://www.mdpi.com/2227-7390/9/8/842 |
work_keys_str_mv |
AT baojunli onthenormoftheabelianipigroupresiduals AT yuhan onthenormoftheabelianipigroupresiduals AT lugong onthenormoftheabelianipigroupresiduals AT tongjiang onthenormoftheabelianipigroupresiduals |
_version_ |
1721528422236160000 |
spelling |
doaj-23f3845c979c4a49910061a10fa0f67d2021-04-13T23:00:43ZengMDPI AGMathematics2227-73902021-04-01984284210.3390/math9080842On the Norm of the Abelian <i>p</i>-Group-ResidualsBaojun Li0Yu Han1Lü Gong2Tong Jiang3School of Sciences, Nantong University, Nantong 226019, ChinaSchool of Sciences, Nantong University, Nantong 226019, ChinaSchool of Sciences, Nantong University, Nantong 226019, ChinaSchool of Sciences, Nantong University, Nantong 226019, ChinaLet <i>G</i> be a group. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mo>⋂</mo><mrow><mi>H</mi><mo>≤</mo><mi>G</mi></mrow></msub><msub><mi>N</mi><mi>G</mi></msub><mrow><mo>(</mo><msup><mi>H</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is defined and, the properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> are investigated. It is proved that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>P</mi><mrow><mo>[</mo><mi>A</mi><mo>]</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>=</mo><mi>D</mi><mo>(</mo><mi>P</mi><mo>)</mo></mrow></semantics></math></inline-formula> is the Sylow <i>p</i>-subgroup and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>=</mo><mi>N</mi><mo>(</mo><mi>A</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a Hall <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>p</mi><mo>′</mo></msup></semantics></math></inline-formula>-subgroup of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, respectively. Furthermore, it is proved in a group <i>G</i> that (1) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> if and only if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>G</mi></msub><mrow><mo>(</mo><msup><mi>G</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>; (2) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>O</mi><msup><mi>p</mi><mo>′</mo></msup></msub><mrow><mo>(</mo><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>≤</mo><msub><mi>Z</mi><mo>∞</mo></msub><mrow><mo>(</mo><msup><mi>O</mi><mi>p</mi></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and (3) if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Z</mi><mo>(</mo><msup><mi>G</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow><mo>)</mo><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>G</mi></msub><mrow><mo>(</mo><msup><mi>G</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><msub><mi>D</mi><mi>p</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/9/8/842finite groupabelian p-group residualsoluble groupnormalizer |