Nanotechnological and energy-saving methods of production of building composites

The bases of silicate materials’ manufacture of non-autoclave hardening are developed. The realisation opportunity of technological decision complex of using of mineral substances’ structure in silicate materials’ manufacture of non-autoclave hardening and wall's products on their basis is theo...

Full description

Bibliographic Details
Main Authors: Shynkevych Olena, Lutskin Yevgen, Koishev Oleksandr, Bondarenko Georgiy, Tertychnyi Andriy, Myronenko Igor
Format: Article
Language:English
Published: EDP Sciences 2017-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201711601015
Description
Summary:The bases of silicate materials’ manufacture of non-autoclave hardening are developed. The realisation opportunity of technological decision complex of using of mineral substances’ structure in silicate materials’ manufacture of non-autoclave hardening and wall's products on their basis is theoretically proved and practically confirmed. The complex activation of mixture with water materials, as slip, defined the transition from autoclave treatment to thermo-moisture one of silicate materials. The possibility of the practical realization of structure mineral substances’ reserve for the energy consumption of silicate material production are proved experimentally. The optimization of the composition and the hardening conditions in the conditions of thermo-moisture treatment on the basis of experimentally-statistical modelling ensured the receipt of materials with the required properties. The analysis connection between hardening conditions and contents has been fulfilled on experimental-statistic models. The changing of silicate materials’ properties under the influence of inorganic modifier’ surface, of hardening conditions and content of gypsum addition have been estimated. Correlation analysis allows to receive new information about the influence of the contents and the hardening conditions on a degree of interrelation between the structure and the properties of building materials. Optimal compositions and the regimes of hardening are recommended for the receipt of wall’s articles of a different purpose.
ISSN:2261-236X