Summary: | Although many German monitoring sites report declines of NOx concentrations, NO2-concentrations actually stagnate or even increase quite often. Various analyses have identified the altered compositions of nitrogen oxides (NO2/NOx-ratio) emitted by motor vehicles (resulting in an increase of primary NO2-emissions) as well as the chemical environmental conditions (mainly ground level ozone) as the main causes. The chemical conversion of NO to NO2 is often parameterized in dispersion calculations of exhaust emissions. A widely applied conversion model is the so-called Romberg approach from 1996. However, the Romberg approach has to be re-evaluated to accommodate the above-mentioned conditions. This article presents an adjustment to the Romberg approach in accordance with the measured data from 2000 to 2006, taking into consideration substantially higher NO2/NOx-ratios especially for higher NOx-concentrations. Model calculations with OSPM (Operational Street Pollution Model) including its internal chemistry module are able to reproduce very well the trends in the measured annual NO2-concentrations over a 10 year period. The relevant parameters for variations between the years are the NOx-emissions, primary NO2-emissions, ozone concentrations, wind conditions, and background concentrations. A simplified chemistry model based on annual mean NOx- and NO2-concentrations, and background ozone concentrations, as well as primary NO2-emissions is presented as a better method than the updated Romberg approach. This model simulates the annual mean NO2-concentrations much more accurately than the conventional and the updated Romberg approaches.
|