Some distance based indices of graphs based on four new operations related to the lexicographic product

For a (molecular) graph, the Wiener index, hyper-Wiener index and degree distance index are defined as $$W(G)= \sum_{\{u,v\}\subseteq V(G)}d_G(u,v),$$ $$WW(G)=W(G)+\sum_{\{u,v\}\subseteq V(G)} d_{G}(u,v)^2,$$ and $$DD(G)=\sum_{\{u,v\}\subseteq V(G)}d_G(u, v)(d(u/G)+d(v/G)),$$ respectively, where $d(...

Full description

Bibliographic Details
Main Authors: N. Dehgardi, S.M. Sheikholeslami, M. Soroudi
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2019-12-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Subjects:
Online Access:https://journals.pnu.edu.ua/index.php/cmp/article/view/2106
Description
Summary:For a (molecular) graph, the Wiener index, hyper-Wiener index and degree distance index are defined as $$W(G)= \sum_{\{u,v\}\subseteq V(G)}d_G(u,v),$$ $$WW(G)=W(G)+\sum_{\{u,v\}\subseteq V(G)} d_{G}(u,v)^2,$$ and $$DD(G)=\sum_{\{u,v\}\subseteq V(G)}d_G(u, v)(d(u/G)+d(v/G)),$$ respectively, where $d(u/G)$ denotes the degree of a vertex $u$ in $G$ and $d_G(u, v)$ is distance between two vertices $u$ and $v$ of a graph $G$. In this paper, we study Wiener index, hyper-Wiener index and degree distance index of graphs based on four new operations related to the lexicographic product, subdivision and total graph.
ISSN:2075-9827
2313-0210