The Use and Interpretation of Sodium Concentrations in Casual (Spot) Urine Collections for Population Surveillance and Partitioning of Dietary Iodine Intake Sources
In 2013, the World Health Organization (WHO) called for joint surveillance of population salt and iodine intakes using urinary analysis. 24-h urine collection is considered the gold standard for salt intake assessment, but there is an emerging consensus that casual urine sampling can provide compara...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2016-12-01
|
Series: | Nutrients |
Subjects: | |
Online Access: | http://www.mdpi.com/2072-6643/9/1/7 |
id |
doaj-2367a5bdadcb4a9689f04fc5b684a56c |
---|---|
record_format |
Article |
spelling |
doaj-2367a5bdadcb4a9689f04fc5b684a56c2020-11-24T21:46:03ZengMDPI AGNutrients2072-66432016-12-0191710.3390/nu9010007nu9010007The Use and Interpretation of Sodium Concentrations in Casual (Spot) Urine Collections for Population Surveillance and Partitioning of Dietary Iodine Intake SourcesJoel Conkle0Frits van der Haar1Nutrition and Health Sciences, Emory University, Atlanta, GA 30340, USAEmory University and Iodine Global Network, Atlanta, GA 30340, USAIn 2013, the World Health Organization (WHO) called for joint surveillance of population salt and iodine intakes using urinary analysis. 24-h urine collection is considered the gold standard for salt intake assessment, but there is an emerging consensus that casual urine sampling can provide comparable information for population-level surveillance. Our review covers the use of the urinary sodium concentration (UNaC) and the urinary iodine concentration (UIC) from casual urine samples to estimate salt intakes and to partition the sources of iodine intakes. We reviewed literature on 24-h urinary sodium excretion (UNaE) and UNaC and documented the use of UNaC for national salt intake monitoring. We combined information from our review of urinary sodium with evidence on urinary iodine to assess the appropriateness of partitioning methods currently being adapted for cross-sectional survey analyses. At least nine countries are using casual urine collection for surveillance of population salt intakes; all these countries used single samples. Time trend analyses indicate that single UNaC can be used for monitoring changes in mean salt intakes. However; single UNaC suffers the same limitation as single UNaE; i.e., an estimate of the proportion excess salt intake can be biased due to high individual variability. There is evidence, albeit limited, that repeat UNaC sampling has good agreement at the population level with repeat UNaE collections; thus permitting an unbiased estimate of the proportion of excess salt intake. High variability of UIC and UNaC in single urine samples may also bias the estimates of dietary iodine intake sources. Our review concludes that repeated collection, in a sub-sample of individuals, of casual UNaC data would provide an immediate practical approach for routine monitoring of salt intake, because it overcomes the bias in estimates of excess salt intake. Thus we recommend more survey research to expand the evidence-base on predicted-UNaE from repeat casual UNaC sampling. We also conclude that the methodology for partitioning the sources of iodine intake based on the combination of UIC and UNaC measurements in casual urine samples can be improved by repeat collections of casual data; which helps to reduce regression dilution bias. We recommend more survey research to determine the effect of regression dilution bias and circadian rhythms on the partitioning of dietary iodine intake sources.http://www.mdpi.com/2072-6643/9/1/7sodiumsaltiodineUNaCUICconcentrationexcretioncasualspoturinary |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Joel Conkle Frits van der Haar |
spellingShingle |
Joel Conkle Frits van der Haar The Use and Interpretation of Sodium Concentrations in Casual (Spot) Urine Collections for Population Surveillance and Partitioning of Dietary Iodine Intake Sources Nutrients sodium salt iodine UNaC UIC concentration excretion casual spot urinary |
author_facet |
Joel Conkle Frits van der Haar |
author_sort |
Joel Conkle |
title |
The Use and Interpretation of Sodium Concentrations in Casual (Spot) Urine Collections for Population Surveillance and Partitioning of Dietary Iodine Intake Sources |
title_short |
The Use and Interpretation of Sodium Concentrations in Casual (Spot) Urine Collections for Population Surveillance and Partitioning of Dietary Iodine Intake Sources |
title_full |
The Use and Interpretation of Sodium Concentrations in Casual (Spot) Urine Collections for Population Surveillance and Partitioning of Dietary Iodine Intake Sources |
title_fullStr |
The Use and Interpretation of Sodium Concentrations in Casual (Spot) Urine Collections for Population Surveillance and Partitioning of Dietary Iodine Intake Sources |
title_full_unstemmed |
The Use and Interpretation of Sodium Concentrations in Casual (Spot) Urine Collections for Population Surveillance and Partitioning of Dietary Iodine Intake Sources |
title_sort |
use and interpretation of sodium concentrations in casual (spot) urine collections for population surveillance and partitioning of dietary iodine intake sources |
publisher |
MDPI AG |
series |
Nutrients |
issn |
2072-6643 |
publishDate |
2016-12-01 |
description |
In 2013, the World Health Organization (WHO) called for joint surveillance of population salt and iodine intakes using urinary analysis. 24-h urine collection is considered the gold standard for salt intake assessment, but there is an emerging consensus that casual urine sampling can provide comparable information for population-level surveillance. Our review covers the use of the urinary sodium concentration (UNaC) and the urinary iodine concentration (UIC) from casual urine samples to estimate salt intakes and to partition the sources of iodine intakes. We reviewed literature on 24-h urinary sodium excretion (UNaE) and UNaC and documented the use of UNaC for national salt intake monitoring. We combined information from our review of urinary sodium with evidence on urinary iodine to assess the appropriateness of partitioning methods currently being adapted for cross-sectional survey analyses. At least nine countries are using casual urine collection for surveillance of population salt intakes; all these countries used single samples. Time trend analyses indicate that single UNaC can be used for monitoring changes in mean salt intakes. However; single UNaC suffers the same limitation as single UNaE; i.e., an estimate of the proportion excess salt intake can be biased due to high individual variability. There is evidence, albeit limited, that repeat UNaC sampling has good agreement at the population level with repeat UNaE collections; thus permitting an unbiased estimate of the proportion of excess salt intake. High variability of UIC and UNaC in single urine samples may also bias the estimates of dietary iodine intake sources. Our review concludes that repeated collection, in a sub-sample of individuals, of casual UNaC data would provide an immediate practical approach for routine monitoring of salt intake, because it overcomes the bias in estimates of excess salt intake. Thus we recommend more survey research to expand the evidence-base on predicted-UNaE from repeat casual UNaC sampling. We also conclude that the methodology for partitioning the sources of iodine intake based on the combination of UIC and UNaC measurements in casual urine samples can be improved by repeat collections of casual data; which helps to reduce regression dilution bias. We recommend more survey research to determine the effect of regression dilution bias and circadian rhythms on the partitioning of dietary iodine intake sources. |
topic |
sodium salt iodine UNaC UIC concentration excretion casual spot urinary |
url |
http://www.mdpi.com/2072-6643/9/1/7 |
work_keys_str_mv |
AT joelconkle theuseandinterpretationofsodiumconcentrationsincasualspoturinecollectionsforpopulationsurveillanceandpartitioningofdietaryiodineintakesources AT fritsvanderhaar theuseandinterpretationofsodiumconcentrationsincasualspoturinecollectionsforpopulationsurveillanceandpartitioningofdietaryiodineintakesources AT joelconkle useandinterpretationofsodiumconcentrationsincasualspoturinecollectionsforpopulationsurveillanceandpartitioningofdietaryiodineintakesources AT fritsvanderhaar useandinterpretationofsodiumconcentrationsincasualspoturinecollectionsforpopulationsurveillanceandpartitioningofdietaryiodineintakesources |
_version_ |
1725902251782832128 |