Nutrient Signaling, Stress Response, and Inter-organelle Communication Are Non-canonical Determinants of Cell Fate

Summary: Isogenic cells manifest distinct cellular fates for a single stress; however, the nongenetic mechanisms driving such fates remain poorly understood. Here, we implement a robust multi-channel live-cell imaging approach to uncover noncanonical factors governing cell fate. We show that in resp...

Full description

Bibliographic Details
Main Authors: N. Ezgi Wood, Piya Kositangool, Hanaa Hariri, Ashley J. Marchand, W. Mike Henne
Format: Article
Language:English
Published: Elsevier 2020-12-01
Series:Cell Reports
Subjects:
NVJ
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124720314352
Description
Summary:Summary: Isogenic cells manifest distinct cellular fates for a single stress; however, the nongenetic mechanisms driving such fates remain poorly understood. Here, we implement a robust multi-channel live-cell imaging approach to uncover noncanonical factors governing cell fate. We show that in response to acute glucose removal (AGR), budding yeast undergoes distinct fates, becoming either quiescent or senescent. Senescent cells fail to resume mitotic cycles following glucose replenishment but remain responsive to nutrient stimuli. Whereas quiescent cells manifest starvation-induced adaptation, senescent cells display perturbed endomembrane trafficking and defective nucleus-vacuole junction (NVJ) expansion. Surprisingly, senescence occurs even in the absence of lipid droplets. Importantly, we identify the nutrient-sensing kinase Rim15 as a key biomarker predicting cell fates before AGR stress. We propose that isogenic yeast challenged with acute nutrient shortage contains determinants influencing post-stress fate and demonstrate that specific nutrient signaling, stress response, trafficking, and inter-organelle biomarkers are early indicators for long-term fate outcomes.
ISSN:2211-1247