Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical models
In river basins, soils, groundwater, riparian zones and floodplains, streams, rivers, lakes and reservoirs act as successive filters in which the hydrology, ecology and biogeochemical processing are strongly coupled and together act to retain a significant fraction of the nutrients transported. This...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2013-01-01
|
Series: | Biogeosciences |
Online Access: | http://www.biogeosciences.net/10/1/2013/bg-10-1-2013.pdf |
id |
doaj-23509975294b4276881df1f34cf6bdc6 |
---|---|
record_format |
Article |
spelling |
doaj-23509975294b4276881df1f34cf6bdc62020-11-24T23:11:16ZengCopernicus PublicationsBiogeosciences1726-41701726-41892013-01-0110112210.5194/bg-10-1-2013Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical modelsA. F. BouwmanM. F. P. BierkensJ. GriffioenM. M. HeftingJ. J. MiddelburgH. MiddelkoopC. P. SlompIn river basins, soils, groundwater, riparian zones and floodplains, streams, rivers, lakes and reservoirs act as successive filters in which the hydrology, ecology and biogeochemical processing are strongly coupled and together act to retain a significant fraction of the nutrients transported. This paper compares existing river ecology concepts with current approaches to describe river biogeochemistry, and assesses the value of these concepts and approaches for understanding the impacts of interacting global change disturbances on river biogeochemistry. Through merging perspectives, concepts, and modeling techniques, we propose integrated model approaches that encompass both aquatic and terrestrial components in heterogeneous landscapes. In this model framework, existing ecological and biogeochemical concepts are extended with a balanced approach for assessing nutrient and sediment delivery, on the one hand, and nutrient in-stream retention on the other hand.http://www.biogeosciences.net/10/1/2013/bg-10-1-2013.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
A. F. Bouwman M. F. P. Bierkens J. Griffioen M. M. Hefting J. J. Middelburg H. Middelkoop C. P. Slomp |
spellingShingle |
A. F. Bouwman M. F. P. Bierkens J. Griffioen M. M. Hefting J. J. Middelburg H. Middelkoop C. P. Slomp Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical models Biogeosciences |
author_facet |
A. F. Bouwman M. F. P. Bierkens J. Griffioen M. M. Hefting J. J. Middelburg H. Middelkoop C. P. Slomp |
author_sort |
A. F. Bouwman |
title |
Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical models |
title_short |
Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical models |
title_full |
Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical models |
title_fullStr |
Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical models |
title_full_unstemmed |
Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical models |
title_sort |
nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical models |
publisher |
Copernicus Publications |
series |
Biogeosciences |
issn |
1726-4170 1726-4189 |
publishDate |
2013-01-01 |
description |
In river basins, soils, groundwater, riparian zones and floodplains, streams, rivers, lakes and reservoirs act as successive filters in which the hydrology, ecology and biogeochemical processing are strongly coupled and together act to retain a significant fraction of the nutrients transported. This paper compares existing river ecology concepts with current approaches to describe river biogeochemistry, and assesses the value of these concepts and approaches for understanding the impacts of interacting global change disturbances on river biogeochemistry. Through merging perspectives, concepts, and modeling techniques, we propose integrated model approaches that encompass both aquatic and terrestrial components in heterogeneous landscapes. In this model framework, existing ecological and biogeochemical concepts are extended with a balanced approach for assessing nutrient and sediment delivery, on the one hand, and nutrient in-stream retention on the other hand. |
url |
http://www.biogeosciences.net/10/1/2013/bg-10-1-2013.pdf |
work_keys_str_mv |
AT afbouwman nutrientdynamicstransferandretentionalongtheaquaticcontinuumfromlandtooceantowardsintegrationofecologicalandbiogeochemicalmodels AT mfpbierkens nutrientdynamicstransferandretentionalongtheaquaticcontinuumfromlandtooceantowardsintegrationofecologicalandbiogeochemicalmodels AT jgriffioen nutrientdynamicstransferandretentionalongtheaquaticcontinuumfromlandtooceantowardsintegrationofecologicalandbiogeochemicalmodels AT mmhefting nutrientdynamicstransferandretentionalongtheaquaticcontinuumfromlandtooceantowardsintegrationofecologicalandbiogeochemicalmodels AT jjmiddelburg nutrientdynamicstransferandretentionalongtheaquaticcontinuumfromlandtooceantowardsintegrationofecologicalandbiogeochemicalmodels AT hmiddelkoop nutrientdynamicstransferandretentionalongtheaquaticcontinuumfromlandtooceantowardsintegrationofecologicalandbiogeochemicalmodels AT cpslomp nutrientdynamicstransferandretentionalongtheaquaticcontinuumfromlandtooceantowardsintegrationofecologicalandbiogeochemicalmodels |
_version_ |
1725605106838142976 |