Global bifurcation from intervals for Sturm-Liouville problems which are not linearizable

In this paper, we study unilateral global bifurcation which bifurcates from the trivial solutions axis or from infinity for nonlinear Sturm--Liouville problems of the form \begin{equation} \left\{ \begin{array}{l} -\left(pu'\right)'+qu=\lambda au+af\left(x,u,u',\lambda\right)+g\left(x...

Full description

Bibliographic Details
Main Author: Guowei Dai
Format: Article
Language:English
Published: University of Szeged 2013-11-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=2637
id doaj-23238e4f6b524781a908002d9821725d
record_format Article
spelling doaj-23238e4f6b524781a908002d9821725d2021-07-14T07:21:25ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752013-11-012013651710.14232/ejqtde.2013.1.652637Global bifurcation from intervals for Sturm-Liouville problems which are not linearizableGuowei Dai0Dalian University of TechnologyIn this paper, we study unilateral global bifurcation which bifurcates from the trivial solutions axis or from infinity for nonlinear Sturm--Liouville problems of the form \begin{equation} \left\{ \begin{array}{l} -\left(pu'\right)'+qu=\lambda au+af\left(x,u,u',\lambda\right)+g\left(x,u,u',\lambda\right)\,\,\text{for}\,\, x\in(0,1),\\ b_0u(0)+c_0u'(0)=0,\\ b_1u(1)+c_1u'(1)=0, \end{array} \right.\nonumber \end{equation} where $a\in C([0, 1], [0,+\infty))$ and $a(x)\not\equiv 0$ on any subinterval of $[0, 1]$, $f,g\in C([0,1]\times\mathbb{R}^3,\mathbb{R})$. Suppose that $f$ and $g$ satisfy \begin{equation} \vert f(x,\xi,\eta,\lambda)\vert\leq M_0\vert \xi\vert+M_1\vert \eta\vert,\,\, \forall x\in [0,1]\,\,\text{and}\,\,\lambda \in\mathbb{R}, \nonumber \end{equation} \begin{equation} g(x,\xi,\eta,\lambda)=o(\vert \xi\vert+\vert \eta\vert),\,\, \text{uniformly in}\,\, x\in [0,1]\,\,\text{and}\,\,\lambda \in \Lambda,\nonumber \end{equation} as either $\vert \xi\vert+\vert \eta\vert\rightarrow 0$ or $\vert \xi\vert+\vert \eta\vert\rightarrow +\infty$, for some constants $M_0$, $M_1$, and any bounded interval $\Lambda$.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=2637interval bifurcation; sturm-liouville problem; unilateral global bifurcation
collection DOAJ
language English
format Article
sources DOAJ
author Guowei Dai
spellingShingle Guowei Dai
Global bifurcation from intervals for Sturm-Liouville problems which are not linearizable
Electronic Journal of Qualitative Theory of Differential Equations
interval bifurcation; sturm-liouville problem; unilateral global bifurcation
author_facet Guowei Dai
author_sort Guowei Dai
title Global bifurcation from intervals for Sturm-Liouville problems which are not linearizable
title_short Global bifurcation from intervals for Sturm-Liouville problems which are not linearizable
title_full Global bifurcation from intervals for Sturm-Liouville problems which are not linearizable
title_fullStr Global bifurcation from intervals for Sturm-Liouville problems which are not linearizable
title_full_unstemmed Global bifurcation from intervals for Sturm-Liouville problems which are not linearizable
title_sort global bifurcation from intervals for sturm-liouville problems which are not linearizable
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2013-11-01
description In this paper, we study unilateral global bifurcation which bifurcates from the trivial solutions axis or from infinity for nonlinear Sturm--Liouville problems of the form \begin{equation} \left\{ \begin{array}{l} -\left(pu'\right)'+qu=\lambda au+af\left(x,u,u',\lambda\right)+g\left(x,u,u',\lambda\right)\,\,\text{for}\,\, x\in(0,1),\\ b_0u(0)+c_0u'(0)=0,\\ b_1u(1)+c_1u'(1)=0, \end{array} \right.\nonumber \end{equation} where $a\in C([0, 1], [0,+\infty))$ and $a(x)\not\equiv 0$ on any subinterval of $[0, 1]$, $f,g\in C([0,1]\times\mathbb{R}^3,\mathbb{R})$. Suppose that $f$ and $g$ satisfy \begin{equation} \vert f(x,\xi,\eta,\lambda)\vert\leq M_0\vert \xi\vert+M_1\vert \eta\vert,\,\, \forall x\in [0,1]\,\,\text{and}\,\,\lambda \in\mathbb{R}, \nonumber \end{equation} \begin{equation} g(x,\xi,\eta,\lambda)=o(\vert \xi\vert+\vert \eta\vert),\,\, \text{uniformly in}\,\, x\in [0,1]\,\,\text{and}\,\,\lambda \in \Lambda,\nonumber \end{equation} as either $\vert \xi\vert+\vert \eta\vert\rightarrow 0$ or $\vert \xi\vert+\vert \eta\vert\rightarrow +\infty$, for some constants $M_0$, $M_1$, and any bounded interval $\Lambda$.
topic interval bifurcation; sturm-liouville problem; unilateral global bifurcation
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=2637
work_keys_str_mv AT guoweidai globalbifurcationfromintervalsforsturmliouvilleproblemswhicharenotlinearizable
_version_ 1721303673645039616