Global bifurcation from intervals for Sturm-Liouville problems which are not linearizable
In this paper, we study unilateral global bifurcation which bifurcates from the trivial solutions axis or from infinity for nonlinear Sturm--Liouville problems of the form \begin{equation} \left\{ \begin{array}{l} -\left(pu'\right)'+qu=\lambda au+af\left(x,u,u',\lambda\right)+g\left(x...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2013-11-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=2637 |
id |
doaj-23238e4f6b524781a908002d9821725d |
---|---|
record_format |
Article |
spelling |
doaj-23238e4f6b524781a908002d9821725d2021-07-14T07:21:25ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752013-11-012013651710.14232/ejqtde.2013.1.652637Global bifurcation from intervals for Sturm-Liouville problems which are not linearizableGuowei Dai0Dalian University of TechnologyIn this paper, we study unilateral global bifurcation which bifurcates from the trivial solutions axis or from infinity for nonlinear Sturm--Liouville problems of the form \begin{equation} \left\{ \begin{array}{l} -\left(pu'\right)'+qu=\lambda au+af\left(x,u,u',\lambda\right)+g\left(x,u,u',\lambda\right)\,\,\text{for}\,\, x\in(0,1),\\ b_0u(0)+c_0u'(0)=0,\\ b_1u(1)+c_1u'(1)=0, \end{array} \right.\nonumber \end{equation} where $a\in C([0, 1], [0,+\infty))$ and $a(x)\not\equiv 0$ on any subinterval of $[0, 1]$, $f,g\in C([0,1]\times\mathbb{R}^3,\mathbb{R})$. Suppose that $f$ and $g$ satisfy \begin{equation} \vert f(x,\xi,\eta,\lambda)\vert\leq M_0\vert \xi\vert+M_1\vert \eta\vert,\,\, \forall x\in [0,1]\,\,\text{and}\,\,\lambda \in\mathbb{R}, \nonumber \end{equation} \begin{equation} g(x,\xi,\eta,\lambda)=o(\vert \xi\vert+\vert \eta\vert),\,\, \text{uniformly in}\,\, x\in [0,1]\,\,\text{and}\,\,\lambda \in \Lambda,\nonumber \end{equation} as either $\vert \xi\vert+\vert \eta\vert\rightarrow 0$ or $\vert \xi\vert+\vert \eta\vert\rightarrow +\infty$, for some constants $M_0$, $M_1$, and any bounded interval $\Lambda$.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=2637interval bifurcation; sturm-liouville problem; unilateral global bifurcation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Guowei Dai |
spellingShingle |
Guowei Dai Global bifurcation from intervals for Sturm-Liouville problems which are not linearizable Electronic Journal of Qualitative Theory of Differential Equations interval bifurcation; sturm-liouville problem; unilateral global bifurcation |
author_facet |
Guowei Dai |
author_sort |
Guowei Dai |
title |
Global bifurcation from intervals for Sturm-Liouville problems which are not linearizable |
title_short |
Global bifurcation from intervals for Sturm-Liouville problems which are not linearizable |
title_full |
Global bifurcation from intervals for Sturm-Liouville problems which are not linearizable |
title_fullStr |
Global bifurcation from intervals for Sturm-Liouville problems which are not linearizable |
title_full_unstemmed |
Global bifurcation from intervals for Sturm-Liouville problems which are not linearizable |
title_sort |
global bifurcation from intervals for sturm-liouville problems which are not linearizable |
publisher |
University of Szeged |
series |
Electronic Journal of Qualitative Theory of Differential Equations |
issn |
1417-3875 1417-3875 |
publishDate |
2013-11-01 |
description |
In this paper, we study unilateral global bifurcation which bifurcates from the trivial solutions axis or from infinity for nonlinear Sturm--Liouville problems of the form
\begin{equation}
\left\{
\begin{array}{l}
-\left(pu'\right)'+qu=\lambda au+af\left(x,u,u',\lambda\right)+g\left(x,u,u',\lambda\right)\,\,\text{for}\,\, x\in(0,1),\\
b_0u(0)+c_0u'(0)=0,\\
b_1u(1)+c_1u'(1)=0,
\end{array}
\right.\nonumber
\end{equation}
where $a\in C([0, 1], [0,+\infty))$ and $a(x)\not\equiv 0$ on any subinterval of $[0, 1]$,
$f,g\in C([0,1]\times\mathbb{R}^3,\mathbb{R})$. Suppose that $f$ and $g$ satisfy
\begin{equation}
\vert f(x,\xi,\eta,\lambda)\vert\leq M_0\vert \xi\vert+M_1\vert \eta\vert,\,\, \forall x\in [0,1]\,\,\text{and}\,\,\lambda \in\mathbb{R}, \nonumber
\end{equation}
\begin{equation}
g(x,\xi,\eta,\lambda)=o(\vert \xi\vert+\vert \eta\vert),\,\, \text{uniformly in}\,\, x\in [0,1]\,\,\text{and}\,\,\lambda \in \Lambda,\nonumber
\end{equation}
as either $\vert \xi\vert+\vert \eta\vert\rightarrow 0$ or $\vert \xi\vert+\vert \eta\vert\rightarrow +\infty$, for some constants $M_0$, $M_1$, and any bounded
interval $\Lambda$. |
topic |
interval bifurcation; sturm-liouville problem; unilateral global bifurcation |
url |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=2637 |
work_keys_str_mv |
AT guoweidai globalbifurcationfromintervalsforsturmliouvilleproblemswhicharenotlinearizable |
_version_ |
1721303673645039616 |