Global bifurcation from intervals for Sturm-Liouville problems which are not linearizable
In this paper, we study unilateral global bifurcation which bifurcates from the trivial solutions axis or from infinity for nonlinear Sturm--Liouville problems of the form \begin{equation} \left\{ \begin{array}{l} -\left(pu'\right)'+qu=\lambda au+af\left(x,u,u',\lambda\right)+g\left(x...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2013-11-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=2637 |
Summary: | In this paper, we study unilateral global bifurcation which bifurcates from the trivial solutions axis or from infinity for nonlinear Sturm--Liouville problems of the form
\begin{equation}
\left\{
\begin{array}{l}
-\left(pu'\right)'+qu=\lambda au+af\left(x,u,u',\lambda\right)+g\left(x,u,u',\lambda\right)\,\,\text{for}\,\, x\in(0,1),\\
b_0u(0)+c_0u'(0)=0,\\
b_1u(1)+c_1u'(1)=0,
\end{array}
\right.\nonumber
\end{equation}
where $a\in C([0, 1], [0,+\infty))$ and $a(x)\not\equiv 0$ on any subinterval of $[0, 1]$,
$f,g\in C([0,1]\times\mathbb{R}^3,\mathbb{R})$. Suppose that $f$ and $g$ satisfy
\begin{equation}
\vert f(x,\xi,\eta,\lambda)\vert\leq M_0\vert \xi\vert+M_1\vert \eta\vert,\,\, \forall x\in [0,1]\,\,\text{and}\,\,\lambda \in\mathbb{R}, \nonumber
\end{equation}
\begin{equation}
g(x,\xi,\eta,\lambda)=o(\vert \xi\vert+\vert \eta\vert),\,\, \text{uniformly in}\,\, x\in [0,1]\,\,\text{and}\,\,\lambda \in \Lambda,\nonumber
\end{equation}
as either $\vert \xi\vert+\vert \eta\vert\rightarrow 0$ or $\vert \xi\vert+\vert \eta\vert\rightarrow +\infty$, for some constants $M_0$, $M_1$, and any bounded
interval $\Lambda$. |
---|---|
ISSN: | 1417-3875 1417-3875 |