A BOUNDARY-ENHANCED SUPERVOXEL METHOD FOR EXTRACTION OF ROAD EDGES IN MLS POINT CLOUDS
Road extraction plays a significant role in production of high definition maps (HD maps). This paper presents a novel boundary-enhanced supervoxel segmentation method for extracting road edge contours from MLS point clouds. The proposed method first leverages normal feature judgment to obtain 3D poi...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-08-01
|
Series: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Online Access: | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B1-2020/65/2020/isprs-archives-XLIII-B1-2020-65-2020.pdf |
id |
doaj-23140b1ce4794d1da97d6a72901d32cf |
---|---|
record_format |
Article |
spelling |
doaj-23140b1ce4794d1da97d6a72901d32cf2020-11-25T03:20:33ZengCopernicus PublicationsThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences1682-17502194-90342020-08-01XLIII-B1-2020657110.5194/isprs-archives-XLIII-B1-2020-65-2020A BOUNDARY-ENHANCED SUPERVOXEL METHOD FOR EXTRACTION OF ROAD EDGES IN MLS POINT CLOUDSZ. Sha0Y. Chen1W. Li2C. Wang3A. Nurunnabi4J. Li5J. Li6Fujian Key Laboratory of Sensing and Computing for Smart Cities, School of Informatics Xiamen University, Xiamen, Fujian 361005, ChinaFujian Key Laboratory of Sensing and Computing for Smart Cities, School of Informatics Xiamen University, Xiamen, Fujian 361005, ChinaFujian Key Laboratory of Sensing and Computing for Smart Cities, School of Informatics Xiamen University, Xiamen, Fujian 361005, ChinaFujian Key Laboratory of Sensing and Computing for Smart Cities, School of Informatics Xiamen University, Xiamen, Fujian 361005, ChinaFaculty of Science, Technology and Communication, University of Luxembourg, Belval Campus, 2 avenue de l'Université, L-4365 Esch-sur-Alzette, LuxembourgFujian Key Laboratory of Sensing and Computing for Smart Cities, School of Informatics Xiamen University, Xiamen, Fujian 361005, ChinaDepartments of Geography and Environmental Management and Systems Design Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, CanadaRoad extraction plays a significant role in production of high definition maps (HD maps). This paper presents a novel boundary-enhanced supervoxel segmentation method for extracting road edge contours from MLS point clouds. The proposed method first leverages normal feature judgment to obtain 3D point clouds global geometric information, then clusters points according to an existing method with global geometric information to enhance the boundaries. Finally, it utilizes the neighbor spatial distance metric to extract the contours and drop out existing outliers. The proposed method is tested on two datasets acquired by a RIEGL VMX-450 MLS system that contain the major point cloud scenes with different types of road boundaries. The experimental results demonstrate that the proposed method provides a promising solution for extracting contours efficiently and completely. Results show that the precision values are 1.5 times higher and approximately equal than the other two existing methods when the recall value is 0 for both tested two road datasets.https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B1-2020/65/2020/isprs-archives-XLIII-B1-2020-65-2020.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Z. Sha Y. Chen W. Li C. Wang A. Nurunnabi J. Li J. Li |
spellingShingle |
Z. Sha Y. Chen W. Li C. Wang A. Nurunnabi J. Li J. Li A BOUNDARY-ENHANCED SUPERVOXEL METHOD FOR EXTRACTION OF ROAD EDGES IN MLS POINT CLOUDS The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
author_facet |
Z. Sha Y. Chen W. Li C. Wang A. Nurunnabi J. Li J. Li |
author_sort |
Z. Sha |
title |
A BOUNDARY-ENHANCED SUPERVOXEL METHOD FOR EXTRACTION OF ROAD EDGES IN MLS POINT CLOUDS |
title_short |
A BOUNDARY-ENHANCED SUPERVOXEL METHOD FOR EXTRACTION OF ROAD EDGES IN MLS POINT CLOUDS |
title_full |
A BOUNDARY-ENHANCED SUPERVOXEL METHOD FOR EXTRACTION OF ROAD EDGES IN MLS POINT CLOUDS |
title_fullStr |
A BOUNDARY-ENHANCED SUPERVOXEL METHOD FOR EXTRACTION OF ROAD EDGES IN MLS POINT CLOUDS |
title_full_unstemmed |
A BOUNDARY-ENHANCED SUPERVOXEL METHOD FOR EXTRACTION OF ROAD EDGES IN MLS POINT CLOUDS |
title_sort |
boundary-enhanced supervoxel method for extraction of road edges in mls point clouds |
publisher |
Copernicus Publications |
series |
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
issn |
1682-1750 2194-9034 |
publishDate |
2020-08-01 |
description |
Road extraction plays a significant role in production of high definition maps (HD maps). This paper presents a novel boundary-enhanced supervoxel segmentation method for extracting road edge contours from MLS point clouds. The proposed method first leverages normal feature judgment to obtain 3D point clouds global geometric information, then clusters points according to an existing method with global geometric information to enhance the boundaries. Finally, it utilizes the neighbor spatial distance metric to extract the contours and drop out existing outliers. The proposed method is tested on two datasets acquired by a RIEGL VMX-450 MLS system that contain the major point cloud scenes with different types of road boundaries. The experimental results demonstrate that the proposed method provides a promising solution for extracting contours efficiently and completely. Results show that the precision values are 1.5 times higher and approximately equal than the other two existing methods when the recall value is 0 for both tested two road datasets. |
url |
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B1-2020/65/2020/isprs-archives-XLIII-B1-2020-65-2020.pdf |
work_keys_str_mv |
AT zsha aboundaryenhancedsupervoxelmethodforextractionofroadedgesinmlspointclouds AT ychen aboundaryenhancedsupervoxelmethodforextractionofroadedgesinmlspointclouds AT wli aboundaryenhancedsupervoxelmethodforextractionofroadedgesinmlspointclouds AT cwang aboundaryenhancedsupervoxelmethodforextractionofroadedgesinmlspointclouds AT anurunnabi aboundaryenhancedsupervoxelmethodforextractionofroadedgesinmlspointclouds AT jli aboundaryenhancedsupervoxelmethodforextractionofroadedgesinmlspointclouds AT jli aboundaryenhancedsupervoxelmethodforextractionofroadedgesinmlspointclouds AT zsha boundaryenhancedsupervoxelmethodforextractionofroadedgesinmlspointclouds AT ychen boundaryenhancedsupervoxelmethodforextractionofroadedgesinmlspointclouds AT wli boundaryenhancedsupervoxelmethodforextractionofroadedgesinmlspointclouds AT cwang boundaryenhancedsupervoxelmethodforextractionofroadedgesinmlspointclouds AT anurunnabi boundaryenhancedsupervoxelmethodforextractionofroadedgesinmlspointclouds AT jli boundaryenhancedsupervoxelmethodforextractionofroadedgesinmlspointclouds AT jli boundaryenhancedsupervoxelmethodforextractionofroadedgesinmlspointclouds |
_version_ |
1724618097493540864 |