Modelling Behaviour of the Salt Wedge in the Fraser River and Its Relationship with Climate and Man-Made Changes

Agriculture is an important industry in the Province of British Columbia, especially in the Lower Mainland where fertile land in the Fraser River Delta combined with the enormous water resources of the Fraser River Estuary support extensive commercial agriculture, notably berry farming. However, whe...

Full description

Bibliographic Details
Main Authors: Albert Tsz Yeung Leung, Jim Stronach, Jordan Matthieu
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Journal of Marine Science and Engineering
Subjects:
H3D
Online Access:https://www.mdpi.com/2077-1312/6/4/130
id doaj-2310080874f34824b8f6b291dadee38c
record_format Article
spelling doaj-2310080874f34824b8f6b291dadee38c2021-04-02T15:17:36ZengMDPI AGJournal of Marine Science and Engineering2077-13122018-11-016413010.3390/jmse6040130jmse6040130Modelling Behaviour of the Salt Wedge in the Fraser River and Its Relationship with Climate and Man-Made ChangesAlbert Tsz Yeung Leung0Jim Stronach1Jordan Matthieu2Tetra Tech Canada Inc., Water and Marine Engineering Group, 1000-10th Floor 885 Dunsmuir Street, Vancouver, BC V6C 1N5, CanadaTetra Tech Canada Inc., Water and Marine Engineering Group, 1000-10th Floor 885 Dunsmuir Street, Vancouver, BC V6C 1N5, CanadaWSP, Coastal, Ports and Maritime Engineering, 1600-René-Lévesque O., 16e étage, Montreal, QC H3H 1P9, CanadaAgriculture is an important industry in the Province of British Columbia, especially in the Lower Mainland where fertile land in the Fraser River Delta combined with the enormous water resources of the Fraser River Estuary support extensive commercial agriculture, notably berry farming. However, where freshwater from inland meets saltwater from the Strait of Georgia, natural and man-made changes in conditions such as mean sea level, river discharge, and river geometry in the Fraser River Estuary could disrupt the existing balance and pose potential challenges to maintenance of the health of the farming industry. One of these challenges is the anticipated decrease in availability of sufficient freshwater from the river for irrigation purposes. The main driver for this challenge is climate change, which leads to sea level rise and to reductions in river flow at key times of the year. Dredging the navigational channel to allow bigger and deeper vessels in the river may also affect the availability of fresh water for irrigation. In this study, the salinity in the river was simulated using H3D, a proprietary three-dimensional hydrodynamic numerical model which computes the three components of velocity (u,v,w) in three dimensions (x,y,z) on a curvilinear grid developed specially for Fraser River, as well as scalar fields such as salinity and temperature. The results indicate various levels of impact to the salinity in the river and adaptive measures must be established to maintain the long-term viability of the industry. This study found that sea level rise and changes in river discharge would have a larger impact on the availability of fresh water than would channel deepening at the present sea water level. In a low river discharge regime, the impact from sea level change is more significant than in the high river discharge regime. On the other hand, the influence from changes in river discharge on withdrawal appears to increase when water level is lowered. Dredging the channel to accommodate larger vessels with deeper draft would further affect the salinity and shorten the withdrawal window; the effect of channel deepening becomes more pronounced in the lower flow period.https://www.mdpi.com/2077-1312/6/4/130hydrodynamic numerical modelH3Dagriculturesalt wedgeclimate changesea level riseriver dischargechannel deepening
collection DOAJ
language English
format Article
sources DOAJ
author Albert Tsz Yeung Leung
Jim Stronach
Jordan Matthieu
spellingShingle Albert Tsz Yeung Leung
Jim Stronach
Jordan Matthieu
Modelling Behaviour of the Salt Wedge in the Fraser River and Its Relationship with Climate and Man-Made Changes
Journal of Marine Science and Engineering
hydrodynamic numerical model
H3D
agriculture
salt wedge
climate change
sea level rise
river discharge
channel deepening
author_facet Albert Tsz Yeung Leung
Jim Stronach
Jordan Matthieu
author_sort Albert Tsz Yeung Leung
title Modelling Behaviour of the Salt Wedge in the Fraser River and Its Relationship with Climate and Man-Made Changes
title_short Modelling Behaviour of the Salt Wedge in the Fraser River and Its Relationship with Climate and Man-Made Changes
title_full Modelling Behaviour of the Salt Wedge in the Fraser River and Its Relationship with Climate and Man-Made Changes
title_fullStr Modelling Behaviour of the Salt Wedge in the Fraser River and Its Relationship with Climate and Man-Made Changes
title_full_unstemmed Modelling Behaviour of the Salt Wedge in the Fraser River and Its Relationship with Climate and Man-Made Changes
title_sort modelling behaviour of the salt wedge in the fraser river and its relationship with climate and man-made changes
publisher MDPI AG
series Journal of Marine Science and Engineering
issn 2077-1312
publishDate 2018-11-01
description Agriculture is an important industry in the Province of British Columbia, especially in the Lower Mainland where fertile land in the Fraser River Delta combined with the enormous water resources of the Fraser River Estuary support extensive commercial agriculture, notably berry farming. However, where freshwater from inland meets saltwater from the Strait of Georgia, natural and man-made changes in conditions such as mean sea level, river discharge, and river geometry in the Fraser River Estuary could disrupt the existing balance and pose potential challenges to maintenance of the health of the farming industry. One of these challenges is the anticipated decrease in availability of sufficient freshwater from the river for irrigation purposes. The main driver for this challenge is climate change, which leads to sea level rise and to reductions in river flow at key times of the year. Dredging the navigational channel to allow bigger and deeper vessels in the river may also affect the availability of fresh water for irrigation. In this study, the salinity in the river was simulated using H3D, a proprietary three-dimensional hydrodynamic numerical model which computes the three components of velocity (u,v,w) in three dimensions (x,y,z) on a curvilinear grid developed specially for Fraser River, as well as scalar fields such as salinity and temperature. The results indicate various levels of impact to the salinity in the river and adaptive measures must be established to maintain the long-term viability of the industry. This study found that sea level rise and changes in river discharge would have a larger impact on the availability of fresh water than would channel deepening at the present sea water level. In a low river discharge regime, the impact from sea level change is more significant than in the high river discharge regime. On the other hand, the influence from changes in river discharge on withdrawal appears to increase when water level is lowered. Dredging the channel to accommodate larger vessels with deeper draft would further affect the salinity and shorten the withdrawal window; the effect of channel deepening becomes more pronounced in the lower flow period.
topic hydrodynamic numerical model
H3D
agriculture
salt wedge
climate change
sea level rise
river discharge
channel deepening
url https://www.mdpi.com/2077-1312/6/4/130
work_keys_str_mv AT alberttszyeungleung modellingbehaviourofthesaltwedgeinthefraserriveranditsrelationshipwithclimateandmanmadechanges
AT jimstronach modellingbehaviourofthesaltwedgeinthefraserriveranditsrelationshipwithclimateandmanmadechanges
AT jordanmatthieu modellingbehaviourofthesaltwedgeinthefraserriveranditsrelationshipwithclimateandmanmadechanges
_version_ 1721560314841923584