Modeling of COMPASS tokamak divertor liquid metal experiments
Two small liquid metal targets based on the capillary porous structure were exposed to the divertor plasma of the tokamak COMPASS. The first target was wetted by pure lithium and the second one by a lithium-tin alloy, both releasing mainly lithium atoms (sputtering and evaporation) when exposed to p...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2020-12-01
|
Series: | Nuclear Materials and Energy |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2352179120301277 |
id |
doaj-230c13f0b42d4d68ad26ca6a897fb8df |
---|---|
record_format |
Article |
spelling |
doaj-230c13f0b42d4d68ad26ca6a897fb8df2020-12-19T05:07:55ZengElsevierNuclear Materials and Energy2352-17912020-12-0125100860Modeling of COMPASS tokamak divertor liquid metal experimentsJ. Horacek0R. Dejarnac1J. Cecrdle2D. Tskhakaya3A. Vertkov4J. Cavalier5P. Vondracek6M. Jerab7P. Barton8G. van Oost9M. Hron10V. Weinzettl11D. Sestak12S. Lukes13J. Adamek14A. Prishvitsin15M. Iafratti16Y. Gasparyan17Y. Vasina18D. Naydenkova19J. Seidl20E. Gauthier21G. Mazzitelli22M. Komm23J. Gerardin24J. Varju25M. Tomes26S. Entler27J. Hromadka28R. Panek29Institute of Plasma Physics of the CAS, Prague, Czech Republic; Corresponding author.Institute of Plasma Physics of the CAS, Prague, Czech RepublicFNSPE, Czech Technical University, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicJSC Red Star, Moscow, RussiaInstitute of Plasma Physics of the CAS, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicNational Research Nuclear University MEPhI, Moscow, Russia; Ghent Universit y, Ghent, Belgium; National Research University Moscow Power Engineering Institute, Moscow, RussiaInstitute of Plasma Physics of the CAS, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicFNSPE, Czech Technical University, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicNational Research Nuclear University MEPhI, Moscow, RussiaENEA, Fusion Technology Division, Frascati, ItalyNational Research Nuclear University MEPhI, Moscow, RussiaNational Research Nuclear University MEPhI, Moscow, RussiaInstitute of Plasma Physics of the CAS, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicCEA, IRFM, F-13108 Saint-Paul-lez-Durance, FranceENEA, Fusion Technology Division, Frascati, ItalyInstitute of Plasma Physics of the CAS, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicTwo small liquid metal targets based on the capillary porous structure were exposed to the divertor plasma of the tokamak COMPASS. The first target was wetted by pure lithium and the second one by a lithium-tin alloy, both releasing mainly lithium atoms (sputtering and evaporation) when exposed to plasma. Due to poorly conductive target material and steep surface inclination (implying the surface-perpendicular plasma heat flux 12–17 MW/m2) for 0.1–0.2 s, the LiSn target has reached 900 °C under ELMy H-mode. A model of heat conduction is developed and serves to evaluate the lithium sputtering and evaporation and, thus, the surface cooling by the released lithium and consequent radiative shielding. In these conditions, cooling of the surface by the latent heat of vapor did not exceed 1 MW/m2. About 1019 lithium atoms were evaporated (comparable to the COMPASS 1 m3 plasma deuterium content), local Li pressure exceeded the deuterium plasma pressure. Since the radiating Li vapor cloud spreads over a sphere much larger than the hot spot, its cooling effect is negligible (0.2 MW/m2). We also predict zero lithium prompt redeposition, consistent with our observation.http://www.sciencedirect.com/science/article/pii/S2352179120301277TokamakDivertorLiquid metalsPlasma facing components |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
J. Horacek R. Dejarnac J. Cecrdle D. Tskhakaya A. Vertkov J. Cavalier P. Vondracek M. Jerab P. Barton G. van Oost M. Hron V. Weinzettl D. Sestak S. Lukes J. Adamek A. Prishvitsin M. Iafratti Y. Gasparyan Y. Vasina D. Naydenkova J. Seidl E. Gauthier G. Mazzitelli M. Komm J. Gerardin J. Varju M. Tomes S. Entler J. Hromadka R. Panek |
spellingShingle |
J. Horacek R. Dejarnac J. Cecrdle D. Tskhakaya A. Vertkov J. Cavalier P. Vondracek M. Jerab P. Barton G. van Oost M. Hron V. Weinzettl D. Sestak S. Lukes J. Adamek A. Prishvitsin M. Iafratti Y. Gasparyan Y. Vasina D. Naydenkova J. Seidl E. Gauthier G. Mazzitelli M. Komm J. Gerardin J. Varju M. Tomes S. Entler J. Hromadka R. Panek Modeling of COMPASS tokamak divertor liquid metal experiments Nuclear Materials and Energy Tokamak Divertor Liquid metals Plasma facing components |
author_facet |
J. Horacek R. Dejarnac J. Cecrdle D. Tskhakaya A. Vertkov J. Cavalier P. Vondracek M. Jerab P. Barton G. van Oost M. Hron V. Weinzettl D. Sestak S. Lukes J. Adamek A. Prishvitsin M. Iafratti Y. Gasparyan Y. Vasina D. Naydenkova J. Seidl E. Gauthier G. Mazzitelli M. Komm J. Gerardin J. Varju M. Tomes S. Entler J. Hromadka R. Panek |
author_sort |
J. Horacek |
title |
Modeling of COMPASS tokamak divertor liquid metal experiments |
title_short |
Modeling of COMPASS tokamak divertor liquid metal experiments |
title_full |
Modeling of COMPASS tokamak divertor liquid metal experiments |
title_fullStr |
Modeling of COMPASS tokamak divertor liquid metal experiments |
title_full_unstemmed |
Modeling of COMPASS tokamak divertor liquid metal experiments |
title_sort |
modeling of compass tokamak divertor liquid metal experiments |
publisher |
Elsevier |
series |
Nuclear Materials and Energy |
issn |
2352-1791 |
publishDate |
2020-12-01 |
description |
Two small liquid metal targets based on the capillary porous structure were exposed to the divertor plasma of the tokamak COMPASS. The first target was wetted by pure lithium and the second one by a lithium-tin alloy, both releasing mainly lithium atoms (sputtering and evaporation) when exposed to plasma. Due to poorly conductive target material and steep surface inclination (implying the surface-perpendicular plasma heat flux 12–17 MW/m2) for 0.1–0.2 s, the LiSn target has reached 900 °C under ELMy H-mode. A model of heat conduction is developed and serves to evaluate the lithium sputtering and evaporation and, thus, the surface cooling by the released lithium and consequent radiative shielding. In these conditions, cooling of the surface by the latent heat of vapor did not exceed 1 MW/m2. About 1019 lithium atoms were evaporated (comparable to the COMPASS 1 m3 plasma deuterium content), local Li pressure exceeded the deuterium plasma pressure. Since the radiating Li vapor cloud spreads over a sphere much larger than the hot spot, its cooling effect is negligible (0.2 MW/m2). We also predict zero lithium prompt redeposition, consistent with our observation. |
topic |
Tokamak Divertor Liquid metals Plasma facing components |
url |
http://www.sciencedirect.com/science/article/pii/S2352179120301277 |
work_keys_str_mv |
AT jhoracek modelingofcompasstokamakdivertorliquidmetalexperiments AT rdejarnac modelingofcompasstokamakdivertorliquidmetalexperiments AT jcecrdle modelingofcompasstokamakdivertorliquidmetalexperiments AT dtskhakaya modelingofcompasstokamakdivertorliquidmetalexperiments AT avertkov modelingofcompasstokamakdivertorliquidmetalexperiments AT jcavalier modelingofcompasstokamakdivertorliquidmetalexperiments AT pvondracek modelingofcompasstokamakdivertorliquidmetalexperiments AT mjerab modelingofcompasstokamakdivertorliquidmetalexperiments AT pbarton modelingofcompasstokamakdivertorliquidmetalexperiments AT gvanoost modelingofcompasstokamakdivertorliquidmetalexperiments AT mhron modelingofcompasstokamakdivertorliquidmetalexperiments AT vweinzettl modelingofcompasstokamakdivertorliquidmetalexperiments AT dsestak modelingofcompasstokamakdivertorliquidmetalexperiments AT slukes modelingofcompasstokamakdivertorliquidmetalexperiments AT jadamek modelingofcompasstokamakdivertorliquidmetalexperiments AT aprishvitsin modelingofcompasstokamakdivertorliquidmetalexperiments AT miafratti modelingofcompasstokamakdivertorliquidmetalexperiments AT ygasparyan modelingofcompasstokamakdivertorliquidmetalexperiments AT yvasina modelingofcompasstokamakdivertorliquidmetalexperiments AT dnaydenkova modelingofcompasstokamakdivertorliquidmetalexperiments AT jseidl modelingofcompasstokamakdivertorliquidmetalexperiments AT egauthier modelingofcompasstokamakdivertorliquidmetalexperiments AT gmazzitelli modelingofcompasstokamakdivertorliquidmetalexperiments AT mkomm modelingofcompasstokamakdivertorliquidmetalexperiments AT jgerardin modelingofcompasstokamakdivertorliquidmetalexperiments AT jvarju modelingofcompasstokamakdivertorliquidmetalexperiments AT mtomes modelingofcompasstokamakdivertorliquidmetalexperiments AT sentler modelingofcompasstokamakdivertorliquidmetalexperiments AT jhromadka modelingofcompasstokamakdivertorliquidmetalexperiments AT rpanek modelingofcompasstokamakdivertorliquidmetalexperiments |
_version_ |
1724377733647040512 |