Modeling of COMPASS tokamak divertor liquid metal experiments

Two small liquid metal targets based on the capillary porous structure were exposed to the divertor plasma of the tokamak COMPASS. The first target was wetted by pure lithium and the second one by a lithium-tin alloy, both releasing mainly lithium atoms (sputtering and evaporation) when exposed to p...

Full description

Bibliographic Details
Main Authors: J. Horacek, R. Dejarnac, J. Cecrdle, D. Tskhakaya, A. Vertkov, J. Cavalier, P. Vondracek, M. Jerab, P. Barton, G. van Oost, M. Hron, V. Weinzettl, D. Sestak, S. Lukes, J. Adamek, A. Prishvitsin, M. Iafratti, Y. Gasparyan, Y. Vasina, D. Naydenkova, J. Seidl, E. Gauthier, G. Mazzitelli, M. Komm, J. Gerardin, J. Varju, M. Tomes, S. Entler, J. Hromadka, R. Panek
Format: Article
Language:English
Published: Elsevier 2020-12-01
Series:Nuclear Materials and Energy
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352179120301277
id doaj-230c13f0b42d4d68ad26ca6a897fb8df
record_format Article
spelling doaj-230c13f0b42d4d68ad26ca6a897fb8df2020-12-19T05:07:55ZengElsevierNuclear Materials and Energy2352-17912020-12-0125100860Modeling of COMPASS tokamak divertor liquid metal experimentsJ. Horacek0R. Dejarnac1J. Cecrdle2D. Tskhakaya3A. Vertkov4J. Cavalier5P. Vondracek6M. Jerab7P. Barton8G. van Oost9M. Hron10V. Weinzettl11D. Sestak12S. Lukes13J. Adamek14A. Prishvitsin15M. Iafratti16Y. Gasparyan17Y. Vasina18D. Naydenkova19J. Seidl20E. Gauthier21G. Mazzitelli22M. Komm23J. Gerardin24J. Varju25M. Tomes26S. Entler27J. Hromadka28R. Panek29Institute of Plasma Physics of the CAS, Prague, Czech Republic; Corresponding author.Institute of Plasma Physics of the CAS, Prague, Czech RepublicFNSPE, Czech Technical University, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicJSC Red Star, Moscow, RussiaInstitute of Plasma Physics of the CAS, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicNational Research Nuclear University MEPhI, Moscow, Russia; Ghent Universit y, Ghent, Belgium; National Research University Moscow Power Engineering Institute, Moscow, RussiaInstitute of Plasma Physics of the CAS, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicFNSPE, Czech Technical University, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicNational Research Nuclear University MEPhI, Moscow, RussiaENEA, Fusion Technology Division, Frascati, ItalyNational Research Nuclear University MEPhI, Moscow, RussiaNational Research Nuclear University MEPhI, Moscow, RussiaInstitute of Plasma Physics of the CAS, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicCEA, IRFM, F-13108 Saint-Paul-lez-Durance, FranceENEA, Fusion Technology Division, Frascati, ItalyInstitute of Plasma Physics of the CAS, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicInstitute of Plasma Physics of the CAS, Prague, Czech RepublicTwo small liquid metal targets based on the capillary porous structure were exposed to the divertor plasma of the tokamak COMPASS. The first target was wetted by pure lithium and the second one by a lithium-tin alloy, both releasing mainly lithium atoms (sputtering and evaporation) when exposed to plasma. Due to poorly conductive target material and steep surface inclination (implying the surface-perpendicular plasma heat flux 12–17 MW/m2) for 0.1–0.2 s, the LiSn target has reached 900 °C under ELMy H-mode. A model of heat conduction is developed and serves to evaluate the lithium sputtering and evaporation and, thus, the surface cooling by the released lithium and consequent radiative shielding. In these conditions, cooling of the surface by the latent heat of vapor did not exceed 1 MW/m2. About 1019 lithium atoms were evaporated (comparable to the COMPASS 1 m3 plasma deuterium content), local Li pressure exceeded the deuterium plasma pressure. Since the radiating Li vapor cloud spreads over a sphere much larger than the hot spot, its cooling effect is negligible (0.2 MW/m2). We also predict zero lithium prompt redeposition, consistent with our observation.http://www.sciencedirect.com/science/article/pii/S2352179120301277TokamakDivertorLiquid metalsPlasma facing components
collection DOAJ
language English
format Article
sources DOAJ
author J. Horacek
R. Dejarnac
J. Cecrdle
D. Tskhakaya
A. Vertkov
J. Cavalier
P. Vondracek
M. Jerab
P. Barton
G. van Oost
M. Hron
V. Weinzettl
D. Sestak
S. Lukes
J. Adamek
A. Prishvitsin
M. Iafratti
Y. Gasparyan
Y. Vasina
D. Naydenkova
J. Seidl
E. Gauthier
G. Mazzitelli
M. Komm
J. Gerardin
J. Varju
M. Tomes
S. Entler
J. Hromadka
R. Panek
spellingShingle J. Horacek
R. Dejarnac
J. Cecrdle
D. Tskhakaya
A. Vertkov
J. Cavalier
P. Vondracek
M. Jerab
P. Barton
G. van Oost
M. Hron
V. Weinzettl
D. Sestak
S. Lukes
J. Adamek
A. Prishvitsin
M. Iafratti
Y. Gasparyan
Y. Vasina
D. Naydenkova
J. Seidl
E. Gauthier
G. Mazzitelli
M. Komm
J. Gerardin
J. Varju
M. Tomes
S. Entler
J. Hromadka
R. Panek
Modeling of COMPASS tokamak divertor liquid metal experiments
Nuclear Materials and Energy
Tokamak
Divertor
Liquid metals
Plasma facing components
author_facet J. Horacek
R. Dejarnac
J. Cecrdle
D. Tskhakaya
A. Vertkov
J. Cavalier
P. Vondracek
M. Jerab
P. Barton
G. van Oost
M. Hron
V. Weinzettl
D. Sestak
S. Lukes
J. Adamek
A. Prishvitsin
M. Iafratti
Y. Gasparyan
Y. Vasina
D. Naydenkova
J. Seidl
E. Gauthier
G. Mazzitelli
M. Komm
J. Gerardin
J. Varju
M. Tomes
S. Entler
J. Hromadka
R. Panek
author_sort J. Horacek
title Modeling of COMPASS tokamak divertor liquid metal experiments
title_short Modeling of COMPASS tokamak divertor liquid metal experiments
title_full Modeling of COMPASS tokamak divertor liquid metal experiments
title_fullStr Modeling of COMPASS tokamak divertor liquid metal experiments
title_full_unstemmed Modeling of COMPASS tokamak divertor liquid metal experiments
title_sort modeling of compass tokamak divertor liquid metal experiments
publisher Elsevier
series Nuclear Materials and Energy
issn 2352-1791
publishDate 2020-12-01
description Two small liquid metal targets based on the capillary porous structure were exposed to the divertor plasma of the tokamak COMPASS. The first target was wetted by pure lithium and the second one by a lithium-tin alloy, both releasing mainly lithium atoms (sputtering and evaporation) when exposed to plasma. Due to poorly conductive target material and steep surface inclination (implying the surface-perpendicular plasma heat flux 12–17 MW/m2) for 0.1–0.2 s, the LiSn target has reached 900 °C under ELMy H-mode. A model of heat conduction is developed and serves to evaluate the lithium sputtering and evaporation and, thus, the surface cooling by the released lithium and consequent radiative shielding. In these conditions, cooling of the surface by the latent heat of vapor did not exceed 1 MW/m2. About 1019 lithium atoms were evaporated (comparable to the COMPASS 1 m3 plasma deuterium content), local Li pressure exceeded the deuterium plasma pressure. Since the radiating Li vapor cloud spreads over a sphere much larger than the hot spot, its cooling effect is negligible (0.2 MW/m2). We also predict zero lithium prompt redeposition, consistent with our observation.
topic Tokamak
Divertor
Liquid metals
Plasma facing components
url http://www.sciencedirect.com/science/article/pii/S2352179120301277
work_keys_str_mv AT jhoracek modelingofcompasstokamakdivertorliquidmetalexperiments
AT rdejarnac modelingofcompasstokamakdivertorliquidmetalexperiments
AT jcecrdle modelingofcompasstokamakdivertorliquidmetalexperiments
AT dtskhakaya modelingofcompasstokamakdivertorliquidmetalexperiments
AT avertkov modelingofcompasstokamakdivertorliquidmetalexperiments
AT jcavalier modelingofcompasstokamakdivertorliquidmetalexperiments
AT pvondracek modelingofcompasstokamakdivertorliquidmetalexperiments
AT mjerab modelingofcompasstokamakdivertorliquidmetalexperiments
AT pbarton modelingofcompasstokamakdivertorliquidmetalexperiments
AT gvanoost modelingofcompasstokamakdivertorliquidmetalexperiments
AT mhron modelingofcompasstokamakdivertorliquidmetalexperiments
AT vweinzettl modelingofcompasstokamakdivertorliquidmetalexperiments
AT dsestak modelingofcompasstokamakdivertorliquidmetalexperiments
AT slukes modelingofcompasstokamakdivertorliquidmetalexperiments
AT jadamek modelingofcompasstokamakdivertorliquidmetalexperiments
AT aprishvitsin modelingofcompasstokamakdivertorliquidmetalexperiments
AT miafratti modelingofcompasstokamakdivertorliquidmetalexperiments
AT ygasparyan modelingofcompasstokamakdivertorliquidmetalexperiments
AT yvasina modelingofcompasstokamakdivertorliquidmetalexperiments
AT dnaydenkova modelingofcompasstokamakdivertorliquidmetalexperiments
AT jseidl modelingofcompasstokamakdivertorliquidmetalexperiments
AT egauthier modelingofcompasstokamakdivertorliquidmetalexperiments
AT gmazzitelli modelingofcompasstokamakdivertorliquidmetalexperiments
AT mkomm modelingofcompasstokamakdivertorliquidmetalexperiments
AT jgerardin modelingofcompasstokamakdivertorliquidmetalexperiments
AT jvarju modelingofcompasstokamakdivertorliquidmetalexperiments
AT mtomes modelingofcompasstokamakdivertorliquidmetalexperiments
AT sentler modelingofcompasstokamakdivertorliquidmetalexperiments
AT jhromadka modelingofcompasstokamakdivertorliquidmetalexperiments
AT rpanek modelingofcompasstokamakdivertorliquidmetalexperiments
_version_ 1724377733647040512