The relationships between cutting parameters, tool wear, cutting force and vibration
To study the influences of processes factors on cutting force and vibration in cutting processes, milling tests were carried out on 022Cr17Ni12Mo2 stainless steel under different process conditions using a coated carbide end mill insert. The cutting force and vibration acceleration signals were reco...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SAGE Publishing
2018-01-01
|
Series: | Advances in Mechanical Engineering |
Online Access: | https://doi.org/10.1177/1687814017750434 |
id |
doaj-230027b899c24a98bf89497a7f5b4e8d |
---|---|
record_format |
Article |
spelling |
doaj-230027b899c24a98bf89497a7f5b4e8d2020-11-25T03:43:37ZengSAGE PublishingAdvances in Mechanical Engineering1687-81402018-01-011010.1177/1687814017750434The relationships between cutting parameters, tool wear, cutting force and vibrationXu ChuangwenDou JianmingChai YuzhenLi HuaiyuanShi ZhichengXu JingTo study the influences of processes factors on cutting force and vibration in cutting processes, milling tests were carried out on 022Cr17Ni12Mo2 stainless steel under different process conditions using a coated carbide end mill insert. The cutting force and vibration acceleration signals were recorded, and the wear depth on the flank face of the tool was measured. This study observed tool wear morphology using a scanning electron microscope and investigated distributions of surface elements on the damaged tools by energy spectrum analysis. Based on the revelations of tool wear mechanisms, the influence of milling parameters and tool wear on cutting force and vibration were further investigated. The research shows that oxidation, adhesion and diffusion wear mainly appear on the rake face, along with mechanical and thermal cracking, while adhesive and diffusion wear occur on the flank face. Among process factors, tool wear and milling depth significantly affect cutting force and vibration. Therefore, in actual machining processes, on the premise of meeting the requirements for rigidity and surface roughness of a machine tool, properly increasing the cutting velocity and milling depth can improve productivity and control cutting force and vibration.https://doi.org/10.1177/1687814017750434 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Xu Chuangwen Dou Jianming Chai Yuzhen Li Huaiyuan Shi Zhicheng Xu Jing |
spellingShingle |
Xu Chuangwen Dou Jianming Chai Yuzhen Li Huaiyuan Shi Zhicheng Xu Jing The relationships between cutting parameters, tool wear, cutting force and vibration Advances in Mechanical Engineering |
author_facet |
Xu Chuangwen Dou Jianming Chai Yuzhen Li Huaiyuan Shi Zhicheng Xu Jing |
author_sort |
Xu Chuangwen |
title |
The relationships between cutting parameters, tool wear, cutting force and vibration |
title_short |
The relationships between cutting parameters, tool wear, cutting force and vibration |
title_full |
The relationships between cutting parameters, tool wear, cutting force and vibration |
title_fullStr |
The relationships between cutting parameters, tool wear, cutting force and vibration |
title_full_unstemmed |
The relationships between cutting parameters, tool wear, cutting force and vibration |
title_sort |
relationships between cutting parameters, tool wear, cutting force and vibration |
publisher |
SAGE Publishing |
series |
Advances in Mechanical Engineering |
issn |
1687-8140 |
publishDate |
2018-01-01 |
description |
To study the influences of processes factors on cutting force and vibration in cutting processes, milling tests were carried out on 022Cr17Ni12Mo2 stainless steel under different process conditions using a coated carbide end mill insert. The cutting force and vibration acceleration signals were recorded, and the wear depth on the flank face of the tool was measured. This study observed tool wear morphology using a scanning electron microscope and investigated distributions of surface elements on the damaged tools by energy spectrum analysis. Based on the revelations of tool wear mechanisms, the influence of milling parameters and tool wear on cutting force and vibration were further investigated. The research shows that oxidation, adhesion and diffusion wear mainly appear on the rake face, along with mechanical and thermal cracking, while adhesive and diffusion wear occur on the flank face. Among process factors, tool wear and milling depth significantly affect cutting force and vibration. Therefore, in actual machining processes, on the premise of meeting the requirements for rigidity and surface roughness of a machine tool, properly increasing the cutting velocity and milling depth can improve productivity and control cutting force and vibration. |
url |
https://doi.org/10.1177/1687814017750434 |
work_keys_str_mv |
AT xuchuangwen therelationshipsbetweencuttingparameterstoolwearcuttingforceandvibration AT doujianming therelationshipsbetweencuttingparameterstoolwearcuttingforceandvibration AT chaiyuzhen therelationshipsbetweencuttingparameterstoolwearcuttingforceandvibration AT lihuaiyuan therelationshipsbetweencuttingparameterstoolwearcuttingforceandvibration AT shizhicheng therelationshipsbetweencuttingparameterstoolwearcuttingforceandvibration AT xujing therelationshipsbetweencuttingparameterstoolwearcuttingforceandvibration AT xuchuangwen relationshipsbetweencuttingparameterstoolwearcuttingforceandvibration AT doujianming relationshipsbetweencuttingparameterstoolwearcuttingforceandvibration AT chaiyuzhen relationshipsbetweencuttingparameterstoolwearcuttingforceandvibration AT lihuaiyuan relationshipsbetweencuttingparameterstoolwearcuttingforceandvibration AT shizhicheng relationshipsbetweencuttingparameterstoolwearcuttingforceandvibration AT xujing relationshipsbetweencuttingparameterstoolwearcuttingforceandvibration |
_version_ |
1724518759594459136 |