Microbial Reduction and Detoxification of Chromium from Tannery Effluent by Natural Inhabitants

Chromium (Cr), a chemical agent, has long been used extensively in leather tanning. Hexavalent chromium (Cr-VI) found in tannery effluent is highly toxic, carcinogenic and mutagenic to humans. Transformation of Cr-VI to its trivalent counterpart, Cr-III, is the basic process in its detoxification, a...

Full description

Bibliographic Details
Main Author: Sawkat Ara Pinki, Md. Reazul Karim, Dipankar Dewanjee, Habibur Rahman Bhuiyan, H. M. Abdullah Al Masud and Md. Imranul Hoq
Format: Article
Language:English
Published: Technoscience Publications 2021-09-01
Series:Nature Environment and Pollution Technology
Subjects:
Online Access:https://neptjournal.com/upload-images/(51)D-1173.pdf
id doaj-22e970fa8168412eb27894a7af34e695
record_format Article
spelling doaj-22e970fa8168412eb27894a7af34e6952021-09-02T11:25:47ZengTechnoscience PublicationsNature Environment and Pollution Technology0972-62682395-34542021-09-012031369138010.46488/NEPT.2021.v20i03.051Microbial Reduction and Detoxification of Chromium from Tannery Effluent by Natural InhabitantsSawkat Ara Pinki, Md. Reazul Karim, Dipankar Dewanjee, Habibur Rahman Bhuiyan, H. M. Abdullah Al Masud and Md. Imranul HoqChromium (Cr), a chemical agent, has long been used extensively in leather tanning. Hexavalent chromium (Cr-VI) found in tannery effluent is highly toxic, carcinogenic and mutagenic to humans. Transformation of Cr-VI to its trivalent counterpart, Cr-III, is the basic process in its detoxification, and microbial transformation of Cr-VI to Cr-III has been one of the most widely studied forms of Cr bioremediation. This study aims to explore the ability of naturally occurring bacteria in reducing and detoxifying Cr in vitro and also from tannery effluent. Five efficient Cr reducing and detoxifying bacteria were isolated from tannery effluent, their morphological, cultural, physiological and biochemical characteristics investigated. They were identified as Aeromonas eucrenophila, Bacillus megaterium, B. carboniphilus, B. licheniformis and B. subtilis. Coincubation of the isolates with varying concentrations of potassium dichromate (K2Cr2O7), a Cr salt, in minimum salts medium, pH 7 revealed notable reduction and detoxification of Cr within 24-72 h as determined by 1,5-diphenylcarbazide colorimetric method and atomic absorption spectrophotometry, respectively. The isolates exhibited substantial resistance or tolerance to 125 to 500 ppm K2Cr2O7. Bacterial detoxification or reduction of was increasingly increased as the incubation period increased from 24 to 48 or 72 h and substrate concentration increased from 125 to 250 or 500 ppm. Most of the isolates exhibited increased reduction and detoxification at 37°C compared to that at 30°C or 45°C, and at pH 7 or 8 compared to that at pH 5 or 6. Furthermore, all the isolates exhibited highest detoxification or reduction when peptone was used as carbon source instead of glucose or ammonium acetate. In a chosen or optimized condition of 37°C temperature, pH 7, 125 ppm K2Cr2O7 concentration and 48 h incubation period, most isolates exhibited 85-99% Cr reduction and detoxification from tannery effluent. It was, therefore, inferred that the isolates have potential as biological agent in reducing and detoxifying Cr from industrial effluent.https://neptjournal.com/upload-images/(51)D-1173.pdfindustrial waste, tannery effluent, chromium, hexavalent chromium, detoxification, bioremediation
collection DOAJ
language English
format Article
sources DOAJ
author Sawkat Ara Pinki, Md. Reazul Karim, Dipankar Dewanjee, Habibur Rahman Bhuiyan, H. M. Abdullah Al Masud and Md. Imranul Hoq
spellingShingle Sawkat Ara Pinki, Md. Reazul Karim, Dipankar Dewanjee, Habibur Rahman Bhuiyan, H. M. Abdullah Al Masud and Md. Imranul Hoq
Microbial Reduction and Detoxification of Chromium from Tannery Effluent by Natural Inhabitants
Nature Environment and Pollution Technology
industrial waste, tannery effluent, chromium, hexavalent chromium, detoxification, bioremediation
author_facet Sawkat Ara Pinki, Md. Reazul Karim, Dipankar Dewanjee, Habibur Rahman Bhuiyan, H. M. Abdullah Al Masud and Md. Imranul Hoq
author_sort Sawkat Ara Pinki, Md. Reazul Karim, Dipankar Dewanjee, Habibur Rahman Bhuiyan, H. M. Abdullah Al Masud and Md. Imranul Hoq
title Microbial Reduction and Detoxification of Chromium from Tannery Effluent by Natural Inhabitants
title_short Microbial Reduction and Detoxification of Chromium from Tannery Effluent by Natural Inhabitants
title_full Microbial Reduction and Detoxification of Chromium from Tannery Effluent by Natural Inhabitants
title_fullStr Microbial Reduction and Detoxification of Chromium from Tannery Effluent by Natural Inhabitants
title_full_unstemmed Microbial Reduction and Detoxification of Chromium from Tannery Effluent by Natural Inhabitants
title_sort microbial reduction and detoxification of chromium from tannery effluent by natural inhabitants
publisher Technoscience Publications
series Nature Environment and Pollution Technology
issn 0972-6268
2395-3454
publishDate 2021-09-01
description Chromium (Cr), a chemical agent, has long been used extensively in leather tanning. Hexavalent chromium (Cr-VI) found in tannery effluent is highly toxic, carcinogenic and mutagenic to humans. Transformation of Cr-VI to its trivalent counterpart, Cr-III, is the basic process in its detoxification, and microbial transformation of Cr-VI to Cr-III has been one of the most widely studied forms of Cr bioremediation. This study aims to explore the ability of naturally occurring bacteria in reducing and detoxifying Cr in vitro and also from tannery effluent. Five efficient Cr reducing and detoxifying bacteria were isolated from tannery effluent, their morphological, cultural, physiological and biochemical characteristics investigated. They were identified as Aeromonas eucrenophila, Bacillus megaterium, B. carboniphilus, B. licheniformis and B. subtilis. Coincubation of the isolates with varying concentrations of potassium dichromate (K2Cr2O7), a Cr salt, in minimum salts medium, pH 7 revealed notable reduction and detoxification of Cr within 24-72 h as determined by 1,5-diphenylcarbazide colorimetric method and atomic absorption spectrophotometry, respectively. The isolates exhibited substantial resistance or tolerance to 125 to 500 ppm K2Cr2O7. Bacterial detoxification or reduction of was increasingly increased as the incubation period increased from 24 to 48 or 72 h and substrate concentration increased from 125 to 250 or 500 ppm. Most of the isolates exhibited increased reduction and detoxification at 37°C compared to that at 30°C or 45°C, and at pH 7 or 8 compared to that at pH 5 or 6. Furthermore, all the isolates exhibited highest detoxification or reduction when peptone was used as carbon source instead of glucose or ammonium acetate. In a chosen or optimized condition of 37°C temperature, pH 7, 125 ppm K2Cr2O7 concentration and 48 h incubation period, most isolates exhibited 85-99% Cr reduction and detoxification from tannery effluent. It was, therefore, inferred that the isolates have potential as biological agent in reducing and detoxifying Cr from industrial effluent.
topic industrial waste, tannery effluent, chromium, hexavalent chromium, detoxification, bioremediation
url https://neptjournal.com/upload-images/(51)D-1173.pdf
work_keys_str_mv AT sawkatarapinkimdreazulkarimdipankardewanjeehabiburrahmanbhuiyanhmabdullahalmasudandmdimranulhoq microbialreductionanddetoxificationofchromiumfromtanneryeffluentbynaturalinhabitants
_version_ 1721176005124554752