Spectral Analysis of Stationary Signals Based on Two Simplified Arrangements of Chirp Transform Spectrometer

The classical two-channel push-pull chirp transform spectrometer (CTS) has been widely applied in satellite-borne remote sensing systems for earth observation and deep space exploration. In this paper, we present two simplified structures with single M(l)-C(s) CTS arrangements for the spectral analy...

Full description

Bibliographic Details
Main Authors: Quan Zhao, Ling Tong, Bo Gao
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/10/1/65
Description
Summary:The classical two-channel push-pull chirp transform spectrometer (CTS) has been widely applied in satellite-borne remote sensing systems for earth observation and deep space exploration. In this paper, we present two simplified structures with single M(l)-C(s) CTS arrangements for the spectral analysis of stationary signals. A simplified CTS system with a single M(l)-C(s) arrangement and a time delay line was firstly developed. Another simplified structure of CTS with a M(l)-C(s) arrangement and a frequency conversion channel was also developed for spectral analysis of stationary signals. Simulation and experiment results demonstrate that the two simplified arrangements can both realize spectrum measurement for the stationary signals and obtain the same frequency resolution, amplitude accuracy and system sensitivity as that of the classical two-channel push–pull CTS system. Compared to the classical CTS structure, the two simplified arrangements require fewer devices, save power consumption and have reduced mass. The matching problem between the two channels can be avoided in the two simplified arrangements. The simplified CTS arrangements may have potential application in the spectrum measurement of stationary signals in the field of aviation and spaceflight.
ISSN:2079-9292