Effect of Wing-Wing Interaction on the Propulsive Performance of Two Flapping Wings at Biplane Configuration

The biplane counter-flapping wing is a special type of wing flapping which is inspired from the fish and insect in nature. The propulsive performance is one of the most important considerations for this kind of flapping wing. This paper is aimed at providing a systematic synthesis on the propulsive...

Full description

Bibliographic Details
Main Authors: Jianyang Zhu, Bin Lei
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Applied Bionics and Biomechanics
Online Access:http://dx.doi.org/10.1155/2018/8901067
Description
Summary:The biplane counter-flapping wing is a special type of wing flapping which is inspired from the fish and insect in nature. The propulsive performance is one of the most important considerations for this kind of flapping wing. This paper is aimed at providing a systematic synthesis on the propulsive characteristics of two flapping wings at biplane configuration based on the numerical analysis approach. Firstly, parameters of this special flapping wing are presented. Secondly, the numerical method for simultaneously solving the incompressible flow and counter-flapping motion of the wing is illustrated, and the method is then validated. Thirdly, the effects of phase angle and mean wing spacing on the propulsive characteristics of the biplane counter-flapping wing are analyzed. Finally, the quantification effects of the phase angle and mean wing spacing on the propulsive characteristics of the biplane counter-flapping wing can be obtained. The analysis results in this study will provide useful guidelines to design an effectively propulsive system applying for the flapping micro air or underwater vehicle.
ISSN:1176-2322
1754-2103