Powersum formula for differential resolvents
We will prove that we can specialize the indeterminate α in a linear differential α-resolvent of a univariate polynomial over a differential field of characteristic zero to an integer q to obtain a q-resolvent. We use this idea to obtain a formula, known as the powersum formula, for the terms of the...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2004-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/S0161171204210602 |
Summary: | We will prove that we can specialize the indeterminate α in a linear differential α-resolvent of a univariate polynomial over a differential field of characteristic zero to an integer q to obtain a q-resolvent. We use this idea to obtain a formula, known as the powersum formula, for the terms of the α-resolvent. Finally, we use the powersum formula to rediscover Cockle's differential resolvent of a cubic trinomial. |
---|---|
ISSN: | 0161-1712 1687-0425 |