Fabrication of array of micro circular impressions using different electrolytes by maskless electrochemical micromachining
Maskless electrochemical micromachining (EMM) is a prominent technique for producing the array of micro circular impressions. A method for producing the array of micro circular impressions on stainless steel workpiece applying maskless electrochemical micromachining process is presented. The experim...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2020-01-01
|
Series: | Manufacturing Review |
Subjects: | |
Online Access: | https://mfr.edp-open.org/articles/mfreview/full_html/2020/01/mfreview200001/mfreview200001.html |
id |
doaj-22cd243f784540c19a4dacc8f08abbf8 |
---|---|
record_format |
Article |
spelling |
doaj-22cd243f784540c19a4dacc8f08abbf82020-11-25T03:54:27ZengEDP SciencesManufacturing Review2265-42242020-01-0171510.1051/mfreview/2020012mfreview200001Fabrication of array of micro circular impressions using different electrolytes by maskless electrochemical micromachiningKunar S.0https://orcid.org/0000-0002-6001-328XRajkeerthi E.1Mandal K.2Bhattacharyya B.3Mechanical Engineering Department, Durgapur Institute of Advanced Technology and ManagementManufacturing Engineering Department, College of EngineeringProduction Engineering Department, Jadavpur UniversityProduction Engineering Department, Jadavpur UniversityMaskless electrochemical micromachining (EMM) is a prominent technique for producing the array of micro circular impressions. A method for producing the array of micro circular impressions on stainless steel workpiece applying maskless electrochemical micromachining process is presented. The experimental setup consists of maskless EMM cell, electrode holding devices, electrical connections of electrodes and constricted vertical cross flow electrolyte system to carry out the experimental investigation. One non-conductive masked patterned tool can produce more than twenty six textured samples with high quality. A mathematical model is developed to estimate theoretically the radial overcut and machining depth of the generated array of micro circular impressions by this process and corroborate the experimental results. This study provides an elementary perceptive about maskless EMM process based on the effects of EMM process variables i.e. pulse frequency and duty ratio on surface characteristics including overcut and machining depth for NaCl, NaNO3 and NaNO3 + NaCl electrolytes. From the experimental investigation, it is observed that the combined effect of lower duty ratio and higher frequency generates the best array of micro circular impressions using the mixed electrolyte of NaNO3 + NaCl with mean radial overcut of 23.31 µm and mean machining depth of 14.1 µm.https://mfr.edp-open.org/articles/mfreview/full_html/2020/01/mfreview200001/mfreview200001.htmlarray of micro circular impressionsmaskless emmelectrolytesreused masked toolovercutmachining depth |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Kunar S. Rajkeerthi E. Mandal K. Bhattacharyya B. |
spellingShingle |
Kunar S. Rajkeerthi E. Mandal K. Bhattacharyya B. Fabrication of array of micro circular impressions using different electrolytes by maskless electrochemical micromachining Manufacturing Review array of micro circular impressions maskless emm electrolytes reused masked tool overcut machining depth |
author_facet |
Kunar S. Rajkeerthi E. Mandal K. Bhattacharyya B. |
author_sort |
Kunar S. |
title |
Fabrication of array of micro circular impressions using different electrolytes by maskless electrochemical micromachining |
title_short |
Fabrication of array of micro circular impressions using different electrolytes by maskless electrochemical micromachining |
title_full |
Fabrication of array of micro circular impressions using different electrolytes by maskless electrochemical micromachining |
title_fullStr |
Fabrication of array of micro circular impressions using different electrolytes by maskless electrochemical micromachining |
title_full_unstemmed |
Fabrication of array of micro circular impressions using different electrolytes by maskless electrochemical micromachining |
title_sort |
fabrication of array of micro circular impressions using different electrolytes by maskless electrochemical micromachining |
publisher |
EDP Sciences |
series |
Manufacturing Review |
issn |
2265-4224 |
publishDate |
2020-01-01 |
description |
Maskless electrochemical micromachining (EMM) is a prominent technique for producing the array of micro circular impressions. A method for producing the array of micro circular impressions on stainless steel workpiece applying maskless electrochemical micromachining process is presented. The experimental setup consists of maskless EMM cell, electrode holding devices, electrical connections of electrodes and constricted vertical cross flow electrolyte system to carry out the experimental investigation. One non-conductive masked patterned tool can produce more than twenty six textured samples with high quality. A mathematical model is developed to estimate theoretically the radial overcut and machining depth of the generated array of micro circular impressions by this process and corroborate the experimental results. This study provides an elementary perceptive about maskless EMM process based on the effects of EMM process variables i.e. pulse frequency and duty ratio on surface characteristics including overcut and machining depth for NaCl, NaNO3 and NaNO3 + NaCl electrolytes. From the experimental investigation, it is observed that the combined effect of lower duty ratio and higher frequency generates the best array of micro circular impressions using the mixed electrolyte of NaNO3 + NaCl with mean radial overcut of 23.31 µm and mean machining depth of 14.1 µm. |
topic |
array of micro circular impressions maskless emm electrolytes reused masked tool overcut machining depth |
url |
https://mfr.edp-open.org/articles/mfreview/full_html/2020/01/mfreview200001/mfreview200001.html |
work_keys_str_mv |
AT kunars fabricationofarrayofmicrocircularimpressionsusingdifferentelectrolytesbymasklesselectrochemicalmicromachining AT rajkeerthie fabricationofarrayofmicrocircularimpressionsusingdifferentelectrolytesbymasklesselectrochemicalmicromachining AT mandalk fabricationofarrayofmicrocircularimpressionsusingdifferentelectrolytesbymasklesselectrochemicalmicromachining AT bhattacharyyab fabricationofarrayofmicrocircularimpressionsusingdifferentelectrolytesbymasklesselectrochemicalmicromachining |
_version_ |
1724473591984029696 |