How can the product of two binary recurrences be constant?
Let $\omega$ denote an integer. This paper studies the equation $G_nH_n=\omega$ in the integer binary recurrences $\{G\}$ and $\{H\}$ satisfy the same recurrence relation. The origin of the question gives back to the more general problem $G_nH_n+c=x_{kn+l}$ where $c$ and $k\ge0,~l\ge0$ are fixed int...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sociedade Brasileira de Matemática
2014-01-01
|
Series: | Boletim da Sociedade Paranaense de Matemática |
Subjects: | |
Online Access: | http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/19926 |
id |
doaj-22cbf69d177d409d8196c9089be9d0bc |
---|---|
record_format |
Article |
spelling |
doaj-22cbf69d177d409d8196c9089be9d0bc2020-11-24T21:36:02ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882014-01-0132128328710.5269/bspm.v32i1.199269640How can the product of two binary recurrences be constant?Omar KhadirLaszlo SzalayLet $\omega$ denote an integer. This paper studies the equation $G_nH_n=\omega$ in the integer binary recurrences $\{G\}$ and $\{H\}$ satisfy the same recurrence relation. The origin of the question gives back to the more general problem $G_nH_n+c=x_{kn+l}$ where $c$ and $k\ge0,~l\ge0$ are fixed integers, and the sequence $\{x\}$ is like $\{G\}$ and $\{H\}$. The case of $k=2$ has already been solved (\cite{KLSz}) and now we concentrate on the specific case $k=0$.http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/19926Binary recurrences |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Omar Khadir Laszlo Szalay |
spellingShingle |
Omar Khadir Laszlo Szalay How can the product of two binary recurrences be constant? Boletim da Sociedade Paranaense de Matemática Binary recurrences |
author_facet |
Omar Khadir Laszlo Szalay |
author_sort |
Omar Khadir |
title |
How can the product of two binary recurrences be constant? |
title_short |
How can the product of two binary recurrences be constant? |
title_full |
How can the product of two binary recurrences be constant? |
title_fullStr |
How can the product of two binary recurrences be constant? |
title_full_unstemmed |
How can the product of two binary recurrences be constant? |
title_sort |
how can the product of two binary recurrences be constant? |
publisher |
Sociedade Brasileira de Matemática |
series |
Boletim da Sociedade Paranaense de Matemática |
issn |
0037-8712 2175-1188 |
publishDate |
2014-01-01 |
description |
Let $\omega$ denote an integer. This paper studies the equation $G_nH_n=\omega$ in the integer binary recurrences $\{G\}$ and $\{H\}$ satisfy the same recurrence relation. The origin of the question gives back to the more general problem $G_nH_n+c=x_{kn+l}$ where $c$ and $k\ge0,~l\ge0$ are fixed integers, and the sequence $\{x\}$ is like $\{G\}$ and $\{H\}$. The case of $k=2$ has already been solved (\cite{KLSz}) and now we concentrate on the specific case $k=0$. |
topic |
Binary recurrences |
url |
http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/19926 |
work_keys_str_mv |
AT omarkhadir howcantheproductoftwobinaryrecurrencesbeconstant AT laszloszalay howcantheproductoftwobinaryrecurrencesbeconstant |
_version_ |
1725942593110409216 |