How can the product of two binary recurrences be constant?

Let $\omega$ denote an integer. This paper studies the equation $G_nH_n=\omega$ in the integer binary recurrences $\{G\}$ and $\{H\}$ satisfy the same recurrence relation. The origin of the question gives back to the more general problem $G_nH_n+c=x_{kn+l}$ where $c$ and $k\ge0,~l\ge0$ are fixed int...

Full description

Bibliographic Details
Main Authors: Omar Khadir, Laszlo Szalay
Format: Article
Language:English
Published: Sociedade Brasileira de Matemática 2014-01-01
Series:Boletim da Sociedade Paranaense de Matemática
Subjects:
Online Access:http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/19926
id doaj-22cbf69d177d409d8196c9089be9d0bc
record_format Article
spelling doaj-22cbf69d177d409d8196c9089be9d0bc2020-11-24T21:36:02ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882014-01-0132128328710.5269/bspm.v32i1.199269640How can the product of two binary recurrences be constant?Omar KhadirLaszlo SzalayLet $\omega$ denote an integer. This paper studies the equation $G_nH_n=\omega$ in the integer binary recurrences $\{G\}$ and $\{H\}$ satisfy the same recurrence relation. The origin of the question gives back to the more general problem $G_nH_n+c=x_{kn+l}$ where $c$ and $k\ge0,~l\ge0$ are fixed integers, and the sequence $\{x\}$ is like $\{G\}$ and $\{H\}$. The case of $k=2$ has already been solved (\cite{KLSz}) and now we concentrate on the specific case $k=0$.http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/19926Binary recurrences
collection DOAJ
language English
format Article
sources DOAJ
author Omar Khadir
Laszlo Szalay
spellingShingle Omar Khadir
Laszlo Szalay
How can the product of two binary recurrences be constant?
Boletim da Sociedade Paranaense de Matemática
Binary recurrences
author_facet Omar Khadir
Laszlo Szalay
author_sort Omar Khadir
title How can the product of two binary recurrences be constant?
title_short How can the product of two binary recurrences be constant?
title_full How can the product of two binary recurrences be constant?
title_fullStr How can the product of two binary recurrences be constant?
title_full_unstemmed How can the product of two binary recurrences be constant?
title_sort how can the product of two binary recurrences be constant?
publisher Sociedade Brasileira de Matemática
series Boletim da Sociedade Paranaense de Matemática
issn 0037-8712
2175-1188
publishDate 2014-01-01
description Let $\omega$ denote an integer. This paper studies the equation $G_nH_n=\omega$ in the integer binary recurrences $\{G\}$ and $\{H\}$ satisfy the same recurrence relation. The origin of the question gives back to the more general problem $G_nH_n+c=x_{kn+l}$ where $c$ and $k\ge0,~l\ge0$ are fixed integers, and the sequence $\{x\}$ is like $\{G\}$ and $\{H\}$. The case of $k=2$ has already been solved (\cite{KLSz}) and now we concentrate on the specific case $k=0$.
topic Binary recurrences
url http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/19926
work_keys_str_mv AT omarkhadir howcantheproductoftwobinaryrecurrencesbeconstant
AT laszloszalay howcantheproductoftwobinaryrecurrencesbeconstant
_version_ 1725942593110409216