How can the product of two binary recurrences be constant?

Let $\omega$ denote an integer. This paper studies the equation $G_nH_n=\omega$ in the integer binary recurrences $\{G\}$ and $\{H\}$ satisfy the same recurrence relation. The origin of the question gives back to the more general problem $G_nH_n+c=x_{kn+l}$ where $c$ and $k\ge0,~l\ge0$ are fixed int...

Full description

Bibliographic Details
Main Authors: Omar Khadir, Laszlo Szalay
Format: Article
Language:English
Published: Sociedade Brasileira de Matemática 2014-01-01
Series:Boletim da Sociedade Paranaense de Matemática
Subjects:
Online Access:http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/19926
Description
Summary:Let $\omega$ denote an integer. This paper studies the equation $G_nH_n=\omega$ in the integer binary recurrences $\{G\}$ and $\{H\}$ satisfy the same recurrence relation. The origin of the question gives back to the more general problem $G_nH_n+c=x_{kn+l}$ where $c$ and $k\ge0,~l\ge0$ are fixed integers, and the sequence $\{x\}$ is like $\{G\}$ and $\{H\}$. The case of $k=2$ has already been solved (\cite{KLSz}) and now we concentrate on the specific case $k=0$.
ISSN:0037-8712
2175-1188