Dietary Mg<sup>2+</sup> Intake and the Na<sup>+</sup>/Mg<sup>2+</sup> Exchanger SLC41A1 Influence Components of Mitochondrial Energetics in Murine Cardiomyocytes

Cardiomyocytes are among the most energy-intensive cell types. Interplay between the components of cellular magnesium (Mg) homeostasis and energy metabolism in cardiomyocytes is poorly understood. We have investigated the effects of dietary Mg content and presence/functionality of the Na<sup>+...

Full description

Bibliographic Details
Main Authors: Zuzana Tatarkova, Jeroen H. F. de Baaij, Marian Grendar, Jörg R. Aschenbach, Peter Racay, Caro Bos, Gerhard Sponder, Joost G. J. Hoenderop, Monika Röntgen, Monika Turcanova Koprusakova, Martin Kolisek
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/21/21/8221
id doaj-22b680ea048443aca6e64a0194ba01f3
record_format Article
spelling doaj-22b680ea048443aca6e64a0194ba01f32020-11-25T04:04:07ZengMDPI AGInternational Journal of Molecular Sciences1661-65961422-00672020-11-01218221822110.3390/ijms21218221Dietary Mg<sup>2+</sup> Intake and the Na<sup>+</sup>/Mg<sup>2+</sup> Exchanger SLC41A1 Influence Components of Mitochondrial Energetics in Murine CardiomyocytesZuzana Tatarkova0Jeroen H. F. de Baaij1Marian Grendar2Jörg R. Aschenbach3Peter Racay4Caro Bos5Gerhard Sponder6Joost G. J. Hoenderop7Monika Röntgen8Monika Turcanova Koprusakova9Martin Kolisek10Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4D, 036 01 Martin, SlovakiaDepartment of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, The NetherlandsBiomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4D, 036 01 Martin, SlovakiaInstitute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, GermanyDepartment of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4D, 036 01 Martin, SlovakiaDepartment of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, The NetherlandsInstitute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, GermanyDepartment of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, The NetherlandsLeibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, GermanyClinic of Neurology, University Hospital in Martin, Kollarova 4248/2, 036 01 Martin, SlovakiaBiomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4D, 036 01 Martin, SlovakiaCardiomyocytes are among the most energy-intensive cell types. Interplay between the components of cellular magnesium (Mg) homeostasis and energy metabolism in cardiomyocytes is poorly understood. We have investigated the effects of dietary Mg content and presence/functionality of the Na<sup>+</sup>/Mg<sup>2+</sup> exchanger SLC41A1 on enzymatic functions of selected constituents of the Krebs cycle and complexes of the electron transport chain (ETC). The activities of aconitate hydratase (ACON), isocitrate dehydrogenase (ICDH), α-ketoglutarate dehydrogenase (KGDH), and ETC complexes CI–CV have been determined in vitro in mitochondria isolated from hearts of wild-type (WT) and <i>Slc41a1</i><sup>−/−</sup> mice fed a diet with either normal or low Mg content. Our data demonstrate that both, the type of Mg diet and the <i>Slc41a1</i> genotype largely impact on the activities of enzymes of the Krebs cycle and ETC. Moreover, a compensatory effect of <i>Slc41a1</i><sup>−/−</sup> genotype on the effect of low Mg diet on activities of the tested Krebs cycle enzymes has been identified. A machine-learning analysis identified activities of ICDH, CI, CIV, and CV as common predictors of the type of Mg diet and of CII as suitable predictor of <i>Slc41a1</i> genotype. Thus, our data delineate the effect of dietary Mg content and of SLC41A1 functionality on the energy-production in cardiac mitochondria.https://www.mdpi.com/1422-0067/21/21/8221magnesiumcardiomyocyteKrebs cycleelectron transport chainoxidative phosphorylationNa<sup>+</sup>/Mg<sup>2+</sup> exchanger
collection DOAJ
language English
format Article
sources DOAJ
author Zuzana Tatarkova
Jeroen H. F. de Baaij
Marian Grendar
Jörg R. Aschenbach
Peter Racay
Caro Bos
Gerhard Sponder
Joost G. J. Hoenderop
Monika Röntgen
Monika Turcanova Koprusakova
Martin Kolisek
spellingShingle Zuzana Tatarkova
Jeroen H. F. de Baaij
Marian Grendar
Jörg R. Aschenbach
Peter Racay
Caro Bos
Gerhard Sponder
Joost G. J. Hoenderop
Monika Röntgen
Monika Turcanova Koprusakova
Martin Kolisek
Dietary Mg<sup>2+</sup> Intake and the Na<sup>+</sup>/Mg<sup>2+</sup> Exchanger SLC41A1 Influence Components of Mitochondrial Energetics in Murine Cardiomyocytes
International Journal of Molecular Sciences
magnesium
cardiomyocyte
Krebs cycle
electron transport chain
oxidative phosphorylation
Na<sup>+</sup>/Mg<sup>2+</sup> exchanger
author_facet Zuzana Tatarkova
Jeroen H. F. de Baaij
Marian Grendar
Jörg R. Aschenbach
Peter Racay
Caro Bos
Gerhard Sponder
Joost G. J. Hoenderop
Monika Röntgen
Monika Turcanova Koprusakova
Martin Kolisek
author_sort Zuzana Tatarkova
title Dietary Mg<sup>2+</sup> Intake and the Na<sup>+</sup>/Mg<sup>2+</sup> Exchanger SLC41A1 Influence Components of Mitochondrial Energetics in Murine Cardiomyocytes
title_short Dietary Mg<sup>2+</sup> Intake and the Na<sup>+</sup>/Mg<sup>2+</sup> Exchanger SLC41A1 Influence Components of Mitochondrial Energetics in Murine Cardiomyocytes
title_full Dietary Mg<sup>2+</sup> Intake and the Na<sup>+</sup>/Mg<sup>2+</sup> Exchanger SLC41A1 Influence Components of Mitochondrial Energetics in Murine Cardiomyocytes
title_fullStr Dietary Mg<sup>2+</sup> Intake and the Na<sup>+</sup>/Mg<sup>2+</sup> Exchanger SLC41A1 Influence Components of Mitochondrial Energetics in Murine Cardiomyocytes
title_full_unstemmed Dietary Mg<sup>2+</sup> Intake and the Na<sup>+</sup>/Mg<sup>2+</sup> Exchanger SLC41A1 Influence Components of Mitochondrial Energetics in Murine Cardiomyocytes
title_sort dietary mg<sup>2+</sup> intake and the na<sup>+</sup>/mg<sup>2+</sup> exchanger slc41a1 influence components of mitochondrial energetics in murine cardiomyocytes
publisher MDPI AG
series International Journal of Molecular Sciences
issn 1661-6596
1422-0067
publishDate 2020-11-01
description Cardiomyocytes are among the most energy-intensive cell types. Interplay between the components of cellular magnesium (Mg) homeostasis and energy metabolism in cardiomyocytes is poorly understood. We have investigated the effects of dietary Mg content and presence/functionality of the Na<sup>+</sup>/Mg<sup>2+</sup> exchanger SLC41A1 on enzymatic functions of selected constituents of the Krebs cycle and complexes of the electron transport chain (ETC). The activities of aconitate hydratase (ACON), isocitrate dehydrogenase (ICDH), α-ketoglutarate dehydrogenase (KGDH), and ETC complexes CI–CV have been determined in vitro in mitochondria isolated from hearts of wild-type (WT) and <i>Slc41a1</i><sup>−/−</sup> mice fed a diet with either normal or low Mg content. Our data demonstrate that both, the type of Mg diet and the <i>Slc41a1</i> genotype largely impact on the activities of enzymes of the Krebs cycle and ETC. Moreover, a compensatory effect of <i>Slc41a1</i><sup>−/−</sup> genotype on the effect of low Mg diet on activities of the tested Krebs cycle enzymes has been identified. A machine-learning analysis identified activities of ICDH, CI, CIV, and CV as common predictors of the type of Mg diet and of CII as suitable predictor of <i>Slc41a1</i> genotype. Thus, our data delineate the effect of dietary Mg content and of SLC41A1 functionality on the energy-production in cardiac mitochondria.
topic magnesium
cardiomyocyte
Krebs cycle
electron transport chain
oxidative phosphorylation
Na<sup>+</sup>/Mg<sup>2+</sup> exchanger
url https://www.mdpi.com/1422-0067/21/21/8221
work_keys_str_mv AT zuzanatatarkova dietarymgsup2supintakeandthenasupsupmgsup2supexchangerslc41a1influencecomponentsofmitochondrialenergeticsinmurinecardiomyocytes
AT jeroenhfdebaaij dietarymgsup2supintakeandthenasupsupmgsup2supexchangerslc41a1influencecomponentsofmitochondrialenergeticsinmurinecardiomyocytes
AT mariangrendar dietarymgsup2supintakeandthenasupsupmgsup2supexchangerslc41a1influencecomponentsofmitochondrialenergeticsinmurinecardiomyocytes
AT jorgraschenbach dietarymgsup2supintakeandthenasupsupmgsup2supexchangerslc41a1influencecomponentsofmitochondrialenergeticsinmurinecardiomyocytes
AT peterracay dietarymgsup2supintakeandthenasupsupmgsup2supexchangerslc41a1influencecomponentsofmitochondrialenergeticsinmurinecardiomyocytes
AT carobos dietarymgsup2supintakeandthenasupsupmgsup2supexchangerslc41a1influencecomponentsofmitochondrialenergeticsinmurinecardiomyocytes
AT gerhardsponder dietarymgsup2supintakeandthenasupsupmgsup2supexchangerslc41a1influencecomponentsofmitochondrialenergeticsinmurinecardiomyocytes
AT joostgjhoenderop dietarymgsup2supintakeandthenasupsupmgsup2supexchangerslc41a1influencecomponentsofmitochondrialenergeticsinmurinecardiomyocytes
AT monikarontgen dietarymgsup2supintakeandthenasupsupmgsup2supexchangerslc41a1influencecomponentsofmitochondrialenergeticsinmurinecardiomyocytes
AT monikaturcanovakoprusakova dietarymgsup2supintakeandthenasupsupmgsup2supexchangerslc41a1influencecomponentsofmitochondrialenergeticsinmurinecardiomyocytes
AT martinkolisek dietarymgsup2supintakeandthenasupsupmgsup2supexchangerslc41a1influencecomponentsofmitochondrialenergeticsinmurinecardiomyocytes
_version_ 1724437719322460160