Indentations on Air Plasma Sprayed Thermal Barrier Coatings Prepared by Different Starting Granules

The effect of starting granules on the indentation properties of air plasma sprayed thermal barrier coatings (TBCs) is investigated in this paper. Various kinds of spray-dried granules are prepared from different processing conditions, especially varying solvent and dispersant, showing a deformed ho...

Full description

Bibliographic Details
Main Authors: Yong Suk Heo, Dong Heon Lee, Yeon-Gil Jung, Kee Sung Lee
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:Journal of Nanomaterials
Online Access:http://dx.doi.org/10.1155/2015/874190
Description
Summary:The effect of starting granules on the indentation properties of air plasma sprayed thermal barrier coatings (TBCs) is investigated in this paper. Various kinds of spray-dried granules are prepared from different processing conditions, especially varying solvent and dispersant, showing a deformed hollow-typed and a filled spherical-typed granule. The similar coating thicknesses are prepared by adjusting process parameters during air plasma spray. All XRD peaks in phase analysis are tetragonal and cubic phases without any monoclinic phase after the starting granules were heat-treated. A relatively porous microstructure of the coating layer could be obtained from the monodisperse granules, while a relatively dense microstructure resulted from the hollow-typed granules. The morphology and distribution of the granules crucially affect the microstructure of thermal barrier coatings and thus have influences on indentation properties such as indentation stress-strain curves, contact damage, and hardness. The implication concerning microstructure design of TBCs for gas turbine applications is considered.
ISSN:1687-4110
1687-4129