Novel High-Power, High Repetition Rate Laser Diode Pump Modules Suitable for High-Energy Class Laser Facilities

The latest generation of high-energy-class pulsed laser facilities, under construction or planned, such as EuPRAXIA, require reliable pump sources with high power (many kW), brightness (&gt;1 MW/cm<sup>2</sup>/sr) and electro-optical conversion efficiency (&gt;50%). These new fac...

Full description

Bibliographic Details
Main Authors: Marko Hübner, Ingo Will, Jörg Körner, Jürgen Reiter, Mathias Lenski, Johannes Tümmler, Joachim Hein, Bernd Eppich, Arnim Ginolas, Paul Crump
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Instruments
Subjects:
Online Access:https://www.mdpi.com/2410-390X/3/3/34
Description
Summary:The latest generation of high-energy-class pulsed laser facilities, under construction or planned, such as EuPRAXIA, require reliable pump sources with high power (many kW), brightness (&gt;1 MW/cm<sup>2</sup>/sr) and electro-optical conversion efficiency (&gt;50%). These new facilities will be operated at high repetition rates (around 100 Hz) and only diode lasers are capable of delivering the necessary performance. Commercial (quasi-continuous wave, QCW) diode laser pulse-pump sources are, however, constructed as low-cost passively cooled stacked arrays that are limited either in brightness, efficiency or repetition rate. Commercial continuous wave diode laser pumps constructed using microchannel coolers (as used in high-value industrial machine tools) can fulfil all requirements, but are typically not preferred, due to their cost and complexity and the challenges of preventing cooler degradation. A custom solution is shown here to fill this gap, using advanced diode lasers in a novel passive side-cooling geometry to realize 100 &#8230; 200 Hz pump modules (10%&#8722;20% duty cycle) that emit peak power of 6 kW at wavelength = 940 nm. The latest performance of these modules is summarized and compared to literature. We show that a brightness &gt;1 MW/cm<sup>2</sup>/sr can be efficiently delivered across a wide range of laser pulse conditions with 10% duty cycle (pulse width: 100 &#181;s &#8230; 100 ms &#8230; cw, repetition rate up to 1 kHz). Furthermore, we describe how these pumps have been used to construct and reliably operate (&gt;10<sup>9</sup> pulses without degradation) in high-energy-class regenerative and ring amplifiers at the Max-Born-Institut f&#252;r Nichtlineare Optik und Kurzzeitspektroskopie (MBI). We also show first results on 100 Hz pumping of cryogenically cooled solid-state Yb:YAG slab amplifiers, as anticipated for use in the EuPRAXIA laser, and note that peak temperature is disproportionately increased, indicating that improved cooling and more detailed studies are needed.
ISSN:2410-390X