Control Strategy for Helicopter Thermal Management System Based on Liquid Cooling and Vapor Compression Refrigeration
With the continuous application of high-power electronic equipment in aircraft, highly efficient heat transfer technology has been emphasized for airborne applications. In this paper, a thermal management system based on an antifreeze liquid cooling loop and a vapor compression refrigeration loop is...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-05-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/13/9/2177 |
id |
doaj-227f6c00c9cc41c3b3a8aae3b3982383 |
---|---|
record_format |
Article |
spelling |
doaj-227f6c00c9cc41c3b3a8aae3b39823832020-11-25T03:00:40ZengMDPI AGEnergies1996-10732020-05-01132177217710.3390/en13092177Control Strategy for Helicopter Thermal Management System Based on Liquid Cooling and Vapor Compression RefrigerationMiao Zhao0Liping Pang1Meng Liu2Shizhao Yu3Xiaodong Mao4School of Aviation Science and Engineering, Beijing University of Aeronautics and Astronautics (BUAA), Beijing 100191, ChinaSchool of Aviation Science and Engineering, Beijing University of Aeronautics and Astronautics (BUAA), Beijing 100191, ChinaSchool of Aviation Science and Engineering, Beijing University of Aeronautics and Astronautics (BUAA), Beijing 100191, ChinaAVIC Xinxiang Aviation Industry (Group) CO, LTD, Xinxiang 453049, ChinaSchool of Aero-engine, Shenyang Aerospace University, Shenyang 110136, ChinaWith the continuous application of high-power electronic equipment in aircraft, highly efficient heat transfer technology has been emphasized for airborne applications. In this paper, a thermal management system based on an antifreeze liquid cooling loop and a vapor compression refrigeration loop is presented for high-power airborne equipment in a helicopter. The simulation models of the thermal management system are built in order to study its control strategy for the changing flight conditions. The antifreeze-refrigerant evaporator and air-refrigerant condenser are specially validated with the experimental data. A dual feedforward proportion integration differentiation and expert control algorithm are adopted in the inlet temperature of the cold plate and sub-cooling control of the refrigerant by regulating the compressor speed and the fan speed, respectively. A preheating strategy for antifreeze is set up to decrease its flow resistance in cold day conditions. The control strategy for the thermal management system is finally built based on the above control methods. In this paper, two extreme conditions are discussed, including cold and hot days. Both the simulation results show that the superheated, sub-cooling and antifreeze inlet temperature of the cold plate can be controlled at 3 to8 °C, −10 to −3 °C and 18 to22 °C, respectively. Under the same changing flight envelope, the coefficient of performance of the vapor compression refrigeration loop is relatively stable on the cold day, which is about 6, while it has a range of 2.58–4.9 on the hot day.https://www.mdpi.com/1996-1073/13/9/2177high-powerthermal management systemantifreeze liquid coolingvapor compression refrigerationcontrol strategy |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Miao Zhao Liping Pang Meng Liu Shizhao Yu Xiaodong Mao |
spellingShingle |
Miao Zhao Liping Pang Meng Liu Shizhao Yu Xiaodong Mao Control Strategy for Helicopter Thermal Management System Based on Liquid Cooling and Vapor Compression Refrigeration Energies high-power thermal management system antifreeze liquid cooling vapor compression refrigeration control strategy |
author_facet |
Miao Zhao Liping Pang Meng Liu Shizhao Yu Xiaodong Mao |
author_sort |
Miao Zhao |
title |
Control Strategy for Helicopter Thermal Management System Based on Liquid Cooling and Vapor Compression Refrigeration |
title_short |
Control Strategy for Helicopter Thermal Management System Based on Liquid Cooling and Vapor Compression Refrigeration |
title_full |
Control Strategy for Helicopter Thermal Management System Based on Liquid Cooling and Vapor Compression Refrigeration |
title_fullStr |
Control Strategy for Helicopter Thermal Management System Based on Liquid Cooling and Vapor Compression Refrigeration |
title_full_unstemmed |
Control Strategy for Helicopter Thermal Management System Based on Liquid Cooling and Vapor Compression Refrigeration |
title_sort |
control strategy for helicopter thermal management system based on liquid cooling and vapor compression refrigeration |
publisher |
MDPI AG |
series |
Energies |
issn |
1996-1073 |
publishDate |
2020-05-01 |
description |
With the continuous application of high-power electronic equipment in aircraft, highly efficient heat transfer technology has been emphasized for airborne applications. In this paper, a thermal management system based on an antifreeze liquid cooling loop and a vapor compression refrigeration loop is presented for high-power airborne equipment in a helicopter. The simulation models of the thermal management system are built in order to study its control strategy for the changing flight conditions. The antifreeze-refrigerant evaporator and air-refrigerant condenser are specially validated with the experimental data. A dual feedforward proportion integration differentiation and expert control algorithm are adopted in the inlet temperature of the cold plate and sub-cooling control of the refrigerant by regulating the compressor speed and the fan speed, respectively. A preheating strategy for antifreeze is set up to decrease its flow resistance in cold day conditions. The control strategy for the thermal management system is finally built based on the above control methods. In this paper, two extreme conditions are discussed, including cold and hot days. Both the simulation results show that the superheated, sub-cooling and antifreeze inlet temperature of the cold plate can be controlled at 3 to8 °C, −10 to −3 °C and 18 to22 °C, respectively. Under the same changing flight envelope, the coefficient of performance of the vapor compression refrigeration loop is relatively stable on the cold day, which is about 6, while it has a range of 2.58–4.9 on the hot day. |
topic |
high-power thermal management system antifreeze liquid cooling vapor compression refrigeration control strategy |
url |
https://www.mdpi.com/1996-1073/13/9/2177 |
work_keys_str_mv |
AT miaozhao controlstrategyforhelicopterthermalmanagementsystembasedonliquidcoolingandvaporcompressionrefrigeration AT lipingpang controlstrategyforhelicopterthermalmanagementsystembasedonliquidcoolingandvaporcompressionrefrigeration AT mengliu controlstrategyforhelicopterthermalmanagementsystembasedonliquidcoolingandvaporcompressionrefrigeration AT shizhaoyu controlstrategyforhelicopterthermalmanagementsystembasedonliquidcoolingandvaporcompressionrefrigeration AT xiaodongmao controlstrategyforhelicopterthermalmanagementsystembasedonliquidcoolingandvaporcompressionrefrigeration |
_version_ |
1724696730969047040 |