Mechanism of hepatic targeting via oral administration of DSPE–PEG–cholic acid-modified nanoliposomes

Ying Li, Chunyan Zhu Department of Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People’s Republic of China Abstract: In oral administration, gastrointestinal physiological environment,...

Full description

Bibliographic Details
Main Authors: Li Y, Zhu CY
Format: Article
Language:English
Published: Dove Medical Press 2017-02-01
Series:International Journal of Nanomedicine
Subjects:
Online Access:https://www.dovepress.com/mechanism-of-hepatic-targeting-via-oral-administration-of-dspendashpeg-peer-reviewed-article-IJN
Description
Summary:Ying Li, Chunyan Zhu Department of Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People’s Republic of China Abstract: In oral administration, gastrointestinal physiological environment, gastrointestinal epithelial cell membranes, and blood circulation are typical biological barriers to hepatic delivery of ligand-modified nanoparticle drug delivery systems. To elucidate the mechanism of oral hepatic targeting of cholic acid receptor-mediated nanoliposomes (LPs) (distearoyl phosphatidylethanolamine–polyethylene glycol–cholic acid-modified LPs, CA-LPs), evaluations were performed on colon cancer Caco-2 cell monolayers, liver cancer HepG2 cells, and a rat intestinal perfusion model. CA-LPs, ~100 nm in diameter, exhibited sustained-release behavior and had the greatest stability in rat gastrointestinal fluid and serum for both size and entrapment efficiency. CA-LPs demonstrated highest transport across Caco-2 cells and highest cellular uptake by HepG2 cells. The enhanced endocytosis of CA-LPs was found to be mediated by Na+/taurocholate cotransporting polypeptide and involved the caveolin-mediated endocytosis pathway. Further, we used fluorescence resonance energy transfer (FRET) technology to show that the CA-LPs maintained their structural integrity in part during the transport across the Caco-2 cell monolayer and uptake by HepG2 cells. Keywords: DSPE–PEG–cholic acid, nanoliposomes, hepatic targeting via oral administration, mechanism, FRET
ISSN:1178-2013