New observations of Tin Mineralization Potential Vis-à-Vis Ore Petrographic, Alteration and Geochemistry in the Southeastern part of Bastar Craton, Central India

The Tin mineralizations occur around the Katekalyan area, hosted in the acid magmatic rocks. The evolution differentiating granitic magma shows residual melt enrichment where end products intruded as pegmatites into the rocks. The different kind of pegmatite occur as simple unzoned, recrystallized (...

Full description

Bibliographic Details
Main Authors: Abhimanyu Singh, Vinod K. Singh
Format: Article
Language:English
Published: UIR Press 2019-06-01
Series:JGEET: Journal of Geoscience, Engineering, Environment and Technology
Online Access:https://journal.uir.ac.id/index.php/JGEET/article/view/2144
Description
Summary:The Tin mineralizations occur around the Katekalyan area, hosted in the acid magmatic rocks. The evolution differentiating granitic magma shows residual melt enrichment where end products intruded as pegmatites into the rocks. The different kind of pegmatite occur as simple unzoned, recrystallized (granitic pegmatite), and metasomatic greisenised and albitised pegmatites which emplaced within the pre-existing rocks of metabasic intrusive, granite (KG), granite gneiss (KGG). Sometimes it also found in metasediments as mineralised and non-mineralised characters along the fractures and foliation planes trending N-S, E-W and more frequently are observed NNW-SSE trends. Cassiterite is most important Tin-ore mineral and associated with pegmatites. Some cassiterite samples exhibit colourless to brown shades zoning which indicate multi stage growth. The cassiterite samples contain significant amounts of Sn, Nb, Ta with minor W. The partial melting model shows that the variation 5 to 50% partial melting of bulk continental crust for KG as well as KGG rocks but bulk distribution coefficient for Sr (DSr) shows low i.e. <<10. The upper limit of partial melting of bulk crust estimates ~50 % for KG and KGG rocks are consistent with required rheological, critical melt percentage to leave the source region has decreased granite melt which were capable to mineralised tin ore elements. It is interesting to note that the SnF4 and SnCl4 probably not stable in presence of water under geologically reasonable conditions.
ISSN:2503-216X
2541-5794